
Minimal Subsampled Rank-1 Lattices for
Multivariate Approximation with Optimal

Convergence Rate

Felix Bartel∗ Alexander D. Gilbert∗ Frances Y. Kuo∗

Ian H. Sloan∗

June 27, 2025

In this paper we show error bounds for randomly subsampled rank-1 lat-
tices. We pay particular attention to the ratio of the size of the subset to the
size of the initial lattice, which is decisive for the computational complexity.
In the special case of Korobov spaces, we achieve the optimal polynomial sam-
pling complexity whilst having the smallest initial lattice possible. We further
characterize the frequency index set for which a given lattice is reconstructing
by using the reciprocal of the worst-case error achieved using the lattice in
question. This connects existing approaches used in proving error bounds
for lattices. We make detailed comments on the implementation and test
different algorithms using the subsampled lattice in numerical experiments.

MSC2020: 41A25, 94A20

1 Introduction

This paper mainly deals with the question of approximating functions from partial rank-1
lattices. Rank-1 lattices have their origin as a Quasi-Monte Carlo (QMC) method and
have been thoroughly studied in various settings ever since, see e.g., [39, 21, 22, 36, 6, 7].
The lattice point sets are given by X = { k

nz mod 1}k∈{0,...,n−1}, where z ∈ Zd is known
as the generating vector and it controls the quality of the point set, and mod 1 denotes
a component-wise fractional part of a vector. The study of partial or subsampled rank-1
lattices has only begun recently, cf. [1]. Such point sets have the form

XJ =
{

k
nz mod 1

}
k∈J

with J ⊆ {0, . . . , n− 1} .

∗School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia.
E-Mail: {f.bartel, alexander.gilbert, f.kuo, i.sloan}@unsw.edu.au

1

X XJ

Figure 1: Left: rank-1 lattice with generating vector z = (1, 21) and lattice size n = 55.
Right: subsampled rank-1 lattice with |J | = ⌈

√
n log

√
n ⌉ = 15.

An example is depicted in Figure 1. The structure of lattice point sets allows for the
application of fast Fourier methods when approximating functions whilst the subsampling
improves the approximation properties, cf. [2]. We investigate the worst-case setting,
where the point set and algorithm are fixed and are used to approximate every function
from a given function class H. The worst-case error for a general algorithm A measured
in L2-norm is defined by

ewor−app(A) := sup
∥f∥H≤1

∥f −Af∥L2 ,

where ∥ · ∥H denotes the norm in H.
For full lattices X = X{0,...,n−1} there are two main approaches to control the worst-

case error:

(i) Based on the function space H and a lattice size n, one computes a generating
vector z directly minimizing (a computable upper bound on) the worst-case error.
It was shown in e.g., [33, 6] that, for certain Korobov spaces with smoothness
parameter α > 1/2, a component-by-component (CBC) construction achieves a
decay rate

ewor−app(AX
A) ≲ n−α/2+ε , (1.1)

where ε > 0, AX
A is the “classical lattice algorithm” (see (2.1) below), and A ≲ B

means there exists a constant C > 0 independent of n such that A ≤ CB. When
α is an integer it is the number of available square-integrable derivatives in each
coordinate.

(ii) Another approach was taken in e.g., [21, 22] where one first constructs a suitable
frequency index set in the Fourier domain and then uses a CBC construction to
end up with a “reconstructing lattice” (see precise definition in (3.1) below). This
enables one to exactly reconstruct every trigonometric polynomial supported on
the given frequencies. The “aliasing”, i.e., the error arising from frequencies outside
of the index set, is then controlled via an error bound. The resulting decay rate is
the same as in (1.1).

2

In this paper we connect both approaches by finding a frequency index set for which a
lattice is reconstructing in Theorem 3.2 below. These frequencies solely depend on the
worst-case error achievable using any algorithm and the lattice in question. In that way,
lattices constructed according the first approach can be investigated with respect to their
reconstructing property, and tools from the second approach become available.

Regardless of the approach, there is a lower bound on the error rate using a full
lattice of n−α/2, which is half the polynomial optimal rate of decay n−α when there is
no restriction for the point set used, cf. [3]. This seems to be an intrinsic problem with
redundant information in the full lattice and motivates only using a subsampled lattice.
This was already investigated in the paper [1].

For unweighted Korobov spaces known as periodic Sobolev spaces with dominating
mixed smoothness α > 1/2, a combination of random and deterministic subsampling
was used in [1, Corollary 1.2], yielding the bound

ewor−app(SXJ
B) ≲ |J |−α(log |J |)(d−1)α+ 1

2 with n ∼ |J |
2

1−1/(2α) , (1.2)

where SXJ
B is the “least squares approximation” to be defined precisely in (4.1) below

and A ∼ B means A ≲ B and B ≲ A holds simultaneously.
The method in [1] achieves the optimal polynomial order |J |−α+ε up to ε > 0 in

terms of sampling complexity. However, the computational complexity is determined
by n. Since an algorithm using a subsampled lattice is inherently still using the lattice
of size n, the lower bound from [3] still applies, and achieving the rate |J |−α+ε implies
n−α/2 ≲ |J |−α+ε, yielding the lower bound

n ≳ |J |2−
2ε
α .

With respect to the size of |J |, (1.2) is off by a polynomial order depending on the
smoothness α.

In this paper, in Theorem 5.3 below, we show that we can go arbitrarily close to the
squared number of points independently of the smoothness, i.e., we have

ewor−app(SXJ
B) ≲

(|J |
log |J |

)−α+ε
with

(|J |
log |J |

)2
√

1−ε/α
≲ n ≲

(|J |
log |J |

) 2√
1−ε/α ,

for 0 < ε < α. This result is optimal in the sense that it achieves the best polynomial
sampling complexity whilst having the smallest initial lattice size.

This paper is organized as follows. We start by introducing the classical lattice algo-
rithm and the kernel method in Section 2. Then we investigate the projection property
of approximation algorithms in Section 3, where we also prove a connection between
the worst-case error and the reconstructing property of lattices in Theorem 3.2, which
appears to be a new result. In Section 4 we show general error bounds for the randomly
subsampled lattice, which we apply to the Korobov space setting in Section 5. After
some comments on different implementations in Section 6, we present some numerical
experiments in Section 7 and give concluding remarks in Section 8.

3

Notation. In this paper T = R/N is the 1-periodic torus; ⟨·, ·⟩ denotes the Euclidean
inner product; x mod 1 is understood as the component-wise fractional part of a vector
x ∈ Rd; we write a ≡n b if there exists k ∈ N such that a = b + kn and a ̸≡n b if not;
∥ · ∥2 denotes the spectral norm of a matrix; vectors are understood as column vectors.

2 Classical lattice algorithm versus kernel method

A rank-1 lattice point set X = { k
nz mod 1}n−1

k=0 is defined by a generating vector z ∈ Zd

and the lattice size n ∈ N. Rank-1 lattices were first studied as a Quasi-Monte Carlo
(QMC) method to compute integrals, see e.g., [39]∫

Td

f(x) dx ≈ 1

n

n−1∑
k=0

f(knz mod 1) ,

which corresponds to approximating the Fourier coefficient f̂0 of a function with the
Fourier series

f =
∑
h∈Zd

f̂h exp(2πi⟨h, ·⟩) , where f̂h =

∫
Td

f(x) exp(−2πi⟨h,x⟩) dx .

Doing this for multiple frequencies h from a prescribed frequency index set A ⊆ Zd, one
may construct the trigonometric polynomial approximation to f which we refer to as the
classical lattice algorithm

AX
A f :=

∑
h∈A

(1

n

n−1∑
k=0

f(knz mod 1) exp(−2πi kn⟨h, z⟩)︸ ︷︷ ︸
=: ĝh

)
exp(2πi⟨h, ·⟩) , (2.1)

see e.g., [33, 22, 21, 36, 6, 7]. To get a feeling for this method, we have a look at the
Fourier coefficients of the approximation AX

A f =: g =
∑

h∈A ĝh exp(2πi⟨h, ·⟩) in terms
of the Fourier coefficients of f . By the character property 1

n

∑n−1
k=0 exp(2πim

k
n) = δm≡n0,

we have for h ∈ A

ĝh =
1

n

n−1∑
k=0

(∑
ℓ∈Zd

f̂ℓ exp(2πi
k
n⟨ℓ, z⟩)

)
exp(−2πi kn⟨h, z⟩)

=
∑
ℓ∈Zd

f̂ℓ
1

n

n−1∑
k=0

exp(2πi kn⟨ℓ− h, z⟩)

=
∑
ℓ∈Zd

⟨ℓ,z⟩≡n⟨h,z⟩

f̂ℓ . (2.2)

Thus, the classical lattice approximation has an aliasing effect where multiple frequencies
of the target function are mapped to a single frequency of the approximation. In order

4

to control this error we have to demand some prior smoothness assumptions on the
function f . This is usually done by enforcing a decay in the Fourier coefficients as
follows

f ∈ H =
{
f : Td → C : ∥f∥2H =

∑
h∈Zd

r(h) |f̂h|2 < ∞
}
, (2.3)

where r(h) → ∞ for ∥h∥2 → ∞. Specific choices of the function r(·) lead to e.g., the
Korobov spaces in Section 5. Obviously there are good and bad choices for the frequency
index set A ⊆ Zd and the generating vector z ∈ Zd. The following theorem gives an
error bound for the classical lattice algorithm and follows [6, Section 2.4].

Theorem 2.1. Let H be the function space defined in (2.3). Further, let X = { k
nz mod

1}n−1
k=0 ⊆ Td a lattice, and A = {h ∈ Zd : r(h) ≤ M} for some radius M > 0. Then for

the classical lattice algorithm defined in (2.1), we have

ewor−app(AX
A)2 <

1

M
+MSn(z) , (2.4)

with
Sn(z) =

∑
h∈Zd

1

r(h)

∑
ℓ∈Zd\{0}
⟨ℓ,z⟩≡n0

1

r(h+ ℓ)
. (2.5)

In particular, with the optimal choice M = 1/
√
Sn(z), which minimizes (2.4), we have

ewor−app(AX
A)2 <

2

M
= 2

√
Sn(z) . (2.6)

We have stated (2.4) and (2.6) as strict inequalities. This can be seen from the deriva-
tion of the quantity Sn(z), see e.g., [6, Formula (2.7)], where infinitely many positive
terms with index h /∈ A were added.

For weighted Korobov spaces (see Section 5 below) and a given lattice size n ∈ N,
component-by-component (CBC) constructions for generating vectors z are known, con-
trolling Sn(z) as in Theorem 5.1 below, which is [30, Theorem 3.3]. Fast CBC imple-
mentations are given in [6, 14].

Next we comment on the kernel method, which is often used in practice and benefits
from the lattice structure, cf. [20, Section 5]. For kernel methods we need to assume
that H is a reproducing kernel Hilbert space, i.e., function evaluations are continuous,
which is a common and natural assumption. By the Moore–Aronszajn theorem H has
a corresponding reproducing kernel K : Td × Td → C, which is symmetric and positive
definite. The kernel approximation of f based on the lattice X is defined by

AX
kerf :=

n−1∑
k=0

ak K(·, knz mod 1) with a = [ak]k∈{0,...,n−1} = K−1f , (2.7)

where K = [K(knz mod 1, k
′

n z mod 1)]k,k′∈{0,...,n−1} is the kernel matrix, and the vector
f = [f(knz mod 1)]k∈{0,...,n−1} consists of the function evaluations on the lattice X. Since

5

K(x,y) = K(x− y,0), we have that K is a circulant matrix

K =
[
K(knz mod 1, k

′

n z mod 1)
]
k,k′∈{0,...,n−1}

=
[
K(k−k′

n z mod 1,0)
]
k,k′∈{0,...,n−1}

.

Thus, it is possible to diagonalize it by a discrete Fourier transform (DFT) matrix F =
[exp(2πi k k′/n)]k,k′∈{0,...,n−1}

K =
1

n
F diag(F ∗c)F ∗ and K−1 =

1

n
F diag(F ∗c)−1F ∗ ,

with c = [K(knz mod 1,0)]k∈{0,...,n−1}. The kernel approximation with lattices is there-
fore computable using three fast Fourier transforms in O(n logn) arithmetic operations.

In terms of the error it is known that for any given set of points, the kernel approxi-
mation (2.7) is optimal among all (linear or nonlinear) algorithms using function values
at the same point set in the worst-case setting with respect to any error norm, cf. [20].
In particular, we have that the worst-case error of the kernel approximation is bounded
by the worst-case error of the classical lattice algorithm (2.1)

ewor−app(AX
ker) ≤ ewor−app(AX

A) .

Thus, the bound from Theorem 2.1 applies to the kernel method as well.

3 Projection property of approximation algorithms

A projection is a linear, idempotent map, meaning that the projection is equal to its
composition with itself. In this section we derive a condition under which the classical
lattice algorithm AX

A defined in (2.1) is a projection.
Clearly we have linearity for AX

A but the idempotence is not always present. For
instance, if there are two aliasing frequencies, i.e., h,h′ ∈ A with ⟨h, z⟩ ≡n ⟨h′, z⟩, we
can take f := exp(2πi⟨h, ·⟩)+exp(2πi⟨h′, ·⟩). We then have f ∈ span{exp(2πi⟨h, ·⟩)}h∈A
yet by (2.2)

AX
A f = 2f ̸= f .

Thus, to ensure idempotence it is necessary that there are no aliasing frequencies in the
index set, that is, no indices have the same inner product with the generating vector z
modulo n.

A lattice X = { k
nz mod 1}n−1

k=0 ⊆ Td is said to have the reconstructing property on
B ⊆ Zd if

⟨h, z⟩ ̸≡n ⟨h′, z⟩ for all h,h′ ∈ B . (3.1)

This is also sufficient for the idempotence as the following theorem shows. For ease of
readability, we will write B ⊆ Zd when we have the reconstructing property and A ⊆ Zd

for a generic frequency index set.

6

Theorem 3.1. Let B ⊆ Zd be a nonempty frequency index set for which the lattice
X = { k

nz mod 1}n−1
k=0 ⊆ Td has the reconstructing property (3.1). Then the classical

lattice algorithm AX
B defined in (2.1) is a projection onto span{exp(2πi⟨h, ·⟩)}h∈B.

Proof. By definition we have that AX
B is linear and maps onto the linear space span{exp(2πi⟨h, ·⟩)}h∈B.

Combining the aliasing formula (2.2) with the reconstructing property of X on B as in
(3.1), we obtain ĝh = f̂h for all h ∈ B and confirm the idempotence.

There are CBC constructions that compute a generating vector z for a given frequency
index set B and n ∈ N large enough that the reconstructing property holds, see e.g., [24,
25]. We investigate the opposite question: given a lattice, what is the set of frequencies
on which we have the reconstructing property, or equivalently what is the space on which
the lattice algorithm is a projection.

Theorem 3.2. Let X = { k
nz mod 1}n−1

k=0 ⊆ Td be a lattice. Further, let H be the function
space from (2.3) and AX a (linear or non-linear) approximation algorithm using samples
of X. Then X is a lattice with reconstructing property (3.1) for the frequency index set{

h ∈ Zd : r(h) < (ewor−app(AX))−2
}
. (3.2)

In particular, the above holds for the best possible worst-case error achievable by any
(linear or non-linear) algorithm using points from the lattice X.

Proof. The proof uses ideas from [3, Theorem 3.2], which showed a lower bound on
the worst-case error using samples from lattices in function spaces of dominating mixed
smoothness.

We will show that for any two aliasing frequencies, at least one must lie outside of the
proposed frequency index set.

Let h,h′ ∈ Zd with h ̸= h′, ⟨h,z⟩ ≡n ⟨h′, z⟩, and r(h) ≤ r(h′). We define the fooling
function

f :=
exp(2πi⟨h, ·⟩)− exp(2πi⟨h′, ·⟩)√

r(h) + r(h′)
,

so that

∥f∥H =

√
r(h) + r(h′)

r(h) + r(h′)
= 1 and ∥f∥L2 =

√
2

r(h) + r(h′)
.

Because of the aliasing frequencies, this function evaluates to zero on the lattice X, i.e.,

f(knz mod 1) =
exp(2πi kn⟨h, z⟩)− exp(2πi kn⟨h

′, z⟩)√
r(h) + r(h′)

= 0 for k ∈ {0, . . . , n− 1} .

If AX were to be linear, we would have AX(f) ≡ 0 and ∥f∥L2 = ∥f − AX(f)∥L2 ≤
ewor−app(AX). Since we also include non-linear algorithms we only have AX(f) =

7

AX(−f) and need an intermediate step for the same result:

∥f∥L2 =
1

2
∥f −AX(f) + f +AX(−f)∥L2

≤ 1

2

(
∥f −AX(f)∥L2 + ∥(−f)−AX(−f)∥L2

)
≤ max

{
∥f −AX(f)∥L2 , ∥(−f)−AX(−f)∥L2

}
≤ ewor−app(AX) .

Thus
1

r(h′)
≤ 2

r(h) + r(h′)
= ∥f∥2L2

≤ ewor−app(AX)2 .

Since this holds for any two aliasing frequencies, at least one of the two aliasing frequencies
must lie outside of the proposed frequency index set (3.2), which is equivalent to the
reconstructing property.

Applying this to the classical lattice algorithm, we obtain the following result.

Corollary 3.3. Let X = { k
nz mod 1}n−1

k=0 ⊆ Td be a lattice and Sn(z) be defined as in
(2.5). Then X has the reconstructing property on{

h ∈ Zd : r(h) ≤ 1

2
√
Sn(z)

}
. (3.3)

Proof. Using the classical lattice algorithm (2.1) in Theorem 3.2, we obtain the recon-
structing property on {

h ∈ Zd : r(h) < (ewor−app(AX
A))−2

}
.

Now we plug in the bound (2.6), which only makes the frequency index set smaller, not
losing the reconstructing property. We have ≤ insead of < in (3.3) since equality is not
attained in (2.1).

Note, the frequency index set (3.3) has half of the radius of the frequency index set
used in the classical lattice algorithm in Theorem 2.1, where we have M = 1/

√
Sn(z).

With the latter choice we do not have the guarantee for the reconstructing property.
This difference could be an artifact of the proof, however.

4 Error bounds for subsampled rank-1 lattices

In this section we investigate what happens to the projection property as well as to
error bounds if we use only a subset of the lattice points XJ = { k

nz mod 1}k∈J for
J ⊆ {0, . . . , n − 1}. Instead of using the classical lattice algorithm, we will use a least
squares approximation

SXJ
B f := argmin

g∈span{exp(2πi⟨h,·⟩)}h∈B

∑
k∈J

∣∣∣g(knz mod 1)− f(knz mod 1)
∣∣∣2 . (4.1)

8

Note that it is necessary for X to have the reconstructing property on B as otherwise
there would be functions with aliasing frequencies having the same function values along
the lattice and subsequently also along the subsampled lattice. This would result in the
non-uniqueness of the least squares approximation. Furthermore, bad choices in J would
not work as well. For instance, we need at least |J | ≥ |B|, otherwise we could construct
a non-zero function that evaluates to zero on XJ , again, yielding non-uniqueness.

Throughout this paper we will use multisets for J , meaning that elements may repeat.
For the cardinality |J |, elements are counted according to their repeated appearance, e.g.
|{1, 1}| = 2. Note that for the actual number of points used, or equivalently, the number
of function evaluations used, it is not necessary to count by repeated appearance but it
always provides an upper bound.

Lemma 4.1. Let B ⊆ Zd be a nonempty frequency index set for which the lattice X =
{ k
nz mod 1}n−1

k=0 ⊆ Td has the reconstructing property. For J ⊆ {0, . . . , n− 1} a multiset
with |J | ≥ |B|, suppose that

LJ,B :=
[
exp(2πi kn⟨h, z⟩)

]
k∈J,h∈B

∈ C|J |×|B| (4.2)

has full rank |B|, and let fJ := [f(knz mod 1)]k∈J for f : Td → C. Then for the least
squares approximation SXJ

B f =
∑

h∈B ĝh exp(2πi⟨h, ·⟩) defined in (4.1), we have the
Fourier coefficients

ĝB := [ĝh]h∈B = (L∗
J,B LJ,B)

−1L∗
J,B fJ .

Proof. The definition of the least squares approximation (4.1) can be rewritten in matrix-
vector form using the wanted Fourier coefficients

argmin
ĝB∈C|B|

∥LJ,B ĝB − fJ∥22 .

Computing this minimum, one uses the normal equation

L∗
J,B LJ,B ĝB = L∗

J,B fJ .

By assumption the left-hand side matrix L∗
J,B LJ,B has full rank and can therefore be

inverted, yielding the assertion.

Note, that the full rank condition already implies that X has to have the reconstructing
property on B and |J | ≥ |B|. Next we show that given full rank of LJ,B, the least squares
approximation still maintains the projection property.

Lemma 4.2. Let B ⊆ Zd be a nonempty frequency index set for which the lattice
X = { k

nz mod 1}n−1
k=0 ⊆ Td has the reconstructing property. For J ⊆ {0, . . . , n − 1} a

multiset with |J | ≥ |B|, suppose LJ,B from (4.2) has full rank |B|. Then the least squares
approximation SXJ

B defined in (4.1), with the subsampled lattice XJ is a projection onto
span{exp(2πi⟨h, ·⟩)}h∈B.

9

Proof. By definition we have that SXJ
B maps linearly into span{exp(2πi⟨h, ·⟩)}h∈B. To

show the idempotence, we use the Fourier representation of a function supported on B

f =
∑
h∈B

f̂h exp(2πi⟨h, ·⟩) ∈ span{exp(2πi⟨h, ·⟩)}h∈B

and collect the Fourier coefficients in the vector f̂B = [f̂h]h∈B. From the reconstructing
property, there holds fJ = LJ,B f̂B. By Lemma 4.1 we have for the Fourier coefficients
of the least squares approximation

ĝB = (L∗
J,B LJ,B)

−1L∗
J,B fJ = (L∗

J,B LJ,B)
−1L∗

J,B LJ,B f̂B = f̂B ,

where the inverse exists because of the assumptions on LJ,B having full rank. The Fourier
coefficients of the least squares approximation coincide with those of the function f . Thus,
they are the same functions, which proves the assertion.

Before commenting on a specific choice in J , we relate the worst-case error of the least
squares approximation to the spectral properties of certain matrices.

Theorem 4.3. Let B ⊆ Zd be a nonempty frequency index set for which the lattice
X = { k

nz mod 1}n−1
k=0 ⊆ Td has the reconstructing property. For J ⊆ {0, . . . , n − 1} a

multiset with |J | ≥ |B|, suppose LJ,B in (4.2) has full rank, and define

ΦJ,B :=
[exp(2πi kn⟨h, z⟩)√

r(h)

]
k∈J,h/∈B

. (4.3)

Then the worst-case error of the least squares approximation defined in (4.1) with respect
to the function space defined in (2.3) satisfies the bound

ewor−app(SXJ
B)2 ≤ sup

h/∈B

1

r(h)
+

∥ΦJ,B∥22
σ2
min(LJ,B)

,

where σmin(LJ,B) denotes the smallest singular value of LJ,B.

Proof. For f ∈ H we write f − SXJ
B f = (f − PBf) + (PBf − SXJ

B f), where PBf =∑
h∈B f̂h exp(2πi⟨h, ·⟩) is the L2-projection of f onto span{exp(2πi⟨h, ·⟩)}h∈B. This

decomposition is orthogonal because by definition SXJ
B f = PB SXJ

B f . Thus,

∥SXJ
B f − f∥2L2

= ∥f − PBf∥2L2
+ ∥PBf − SXJ

B f∥2L2
. (4.4)

For the first summand of (4.4) we use

∥f − PBf∥2L2
=

∑
h/∈B

1

r(h)
r(h) |f̂h|2 ≤ sup

h/∈B

1

r(h)
∥f∥2H .

10

Now we estimate the second summand of (4.4). By Lemma 4.2, SXJ
B is a projection

onto span{exp(2πi⟨h, ·⟩)}h∈B and we obtain using Lemma 4.1

∥PBf − SXJ
B f∥2L2

= ∥SXJ
B PBf − SXJ

B f∥2L2
= ∥SXJ

B (PBf − f)∥2L2

≤
∥∥∥(L∗

J,B LJ,B)
−1L∗

J,B

[
(PBf − f)(knz mod 1)

]
k∈J

∥∥∥2
2

≤ ∥(L∗
J,B LJ,B)

−1L∗
J,B∥22

∑
k∈J

∣∣∣(PBf − f)(knz mod 1)
∣∣∣2 .

By [23, Proposition 3.1], we have ∥(L∗
J,B LJ,B)

−1L∗
J,B∥2 = 1/σmin(LJ,B). On the other

hand, we have∑
k∈J

∣∣∣(f − PBf)(
k
nz mod 1)

∣∣∣2 = ∑
k∈J

∣∣∣∑
h/∈B

f̂h exp(2πi kn⟨h, z⟩)
∣∣∣2

=
∑
k∈J

∣∣∣∑
h/∈B

√
r(h) f̂h

1√
r(h)

exp(2πi kn⟨h, z⟩)
∣∣∣2

= ∥ΦJ,B [
√
r(h) f̂h]h/∈B∥22

≤ ∥ΦJ,B∥22 ∥f∥2H .

Combining the two estimates completes the proof

We have seen in Lemma 4.2 that it is possible to reconstruct trigonometric polynomials
from values at a subsampled lattice XJ = { k

nz mod 1}k∈J ⊆ Td for J ⊆ {0, . . . , n − 1}
given that LJ,B has full rank. The following lemma quantifies this for a randomly selected
subset J .

Lemma 4.4. Let B ⊆ Zd be a nonempty frequency index set for which the lattice X =
{ k
nz mod 1}n−1

k=0 ⊆ Td has the reconstructing property. Further, let t > 0 and J ⊆
{0, . . . , n− 1} be a multiset of uniformly i.i.d. drawn integers with

|J | ≥ 12 |B| (log |B|+ t) . (4.5)

For LJ,B defined as in (4.2) we have the following two inequalities, each holding with
probability exceeding 1− exp(−t),

|J |
2

≤ σ2
min(LJ,B) and σ2

max(LJ,B) ≤
3|J |
2

. (4.6)

For |J | ≥ 3, ΦJ,B as in (4.3), and ΦB = Φ{0,...,n−1},B, we have with probability exceeding
1− 23/4 exp(−t) that

∥ΦJ,B∥22 ≤ 21 (log |J |+ t)
∑
h/∈B

1

r(h)
+ 2

|J |
n

∥ΦB∥22 . (4.7)

11

Proof. By [1, Lemma 2.2] the reconstructing property of X corresponds to an exact
L2-Marcinkiewicz–Zygmund inequality, i.e.,

∥f∥2L2
=

1

n

n−1∑
k=0

|f(knz mod 1)|2 for all f ∈ span{exp(2πi⟨h, ·⟩)}h∈B .

With the logarithmic oversampling assumption (4.5) on J , we are able to use the tech-
nique of [1, Theorem 3.1], which yields that the subsampled points fulfill an L2-Marcinkiewicz–
Zygmund inequality with constants 1/2 and 3/2, i.e.,

1

2
∥f∥2L2

≤ 1

|J |
∑
k∈J

|f(knz mod 1)|2 ≤ 3

2
∥f∥2L2

for all f ∈ span{exp(2πi⟨h, ·⟩)}h∈B ,

where from their proof each bound holds with probability 1−exp(−t), respectively. This
random technique uses a matrix Chernoff concentration inequality [42, Theorem 1.1]
with one of the first applications in the sampling context in [5, Theorem 2.1]. Using [1,
Lemma 2.2] again converts this to the desired bounds on the singular values in (4.6).

For k ∈ {0, . . . , n− 1}, we define the sequences

yk :=
[exp(−2πi kn⟨h, z⟩)√

r(h)

]
h/∈B

,

with ∥yk∥22 ≤
∑

h/∈B 1/r(h), so that

1

|J |
∑
k∈J

yk(yk)∗ =
1

|J |
∑
k∈J

[exp(2πi kn⟨h′ − h, z⟩)√
r(h)r(h′)

]
h,h′ /∈B

=
1

|J |
Φ∗

J,BΦJ,B .

The set J gives us a random set of sequences {yk}k∈J for which we know

Ek(y
k(yk)∗) =

1

n

n−1∑
k=0

[exp(2πi kn⟨h′ − h, z⟩)√
r(h) r(h′)

]
h,h′ /∈B

=
1

n
Φ∗

B ΦB ,

where the expectation is taken with respect to the discrete random variable k uniformly
sampled from {0, . . . , n− 1}. Applying [34, Proposition 3.8] on these random sequences
(with n there replaced by |J | ≥ 3) yields with probability exceeding 1 − 23/4|J |1−β for
β > 1 that∥∥∥ 1

|J |
Φ∗

J,BΦJ,B − 1

n
Φ∗

B ΦB

∥∥∥
2
≤ max

{21β log |J |
|J |

∑
h/∈B

1

r(h)
,
1

n
∥Φ∗

B ΦB∥2
}
.

Setting β = (log |J | + t)/ log |J | for t > 0, this gives with probability exceeding 1 −
23/4 exp(−t) that∥∥∥ 1

|J |
Φ∗

J,BΦJ,B − 1

n
Φ∗

B ΦB

∥∥∥
2
≤ max

{21 (log |J |+ t)

|J |
∑
h/∈B

1

r(h)
,
1

n
∥Φ∗

B ΦB∥2
}
,

from which the assertion (4.7) follows by basic arithmetic operations.

12

Using these spectral bounds in the general error bound for least squares approximation
yields the following theorem.

Theorem 4.5. Let B ⊆ Zd be a nonempty frequency index set for which the lattice
X = { k

nz mod 1}n−1
k=0 ⊆ Td has the reconstructing property. Further, let t ≥ 4 and

J ⊆ {0, . . . , n− 1} be a multiset of uniformly i.i.d. drawn integers with

|J | := ⌈12 |B| (log |B|+ t)⌉ .

Then the least squares approximation defined in (4.1) using samples on the subsampled
lattice XJ satisfies with probability exceeding 1− 3 exp(−t) that

ewor−app(SXJ
B)2 ≤ sup

h/∈B

1

r(h)
+

42 (log |J |+ t)

|J |
∑
h/∈B

1

r(h)
+

4

n
∥ΦB∥22 ,

with respect to the function space defined in (2.3) and ΦB = Φ{0,...,n−1},B as in (4.3).
Additionally we have

6 (log |J |+ t)

|J |
≤ 1

|B|
≤ 13 (log |J |+ t)

|J |
. (4.8)

Proof. We use the bound of the smallest singular value of LJ,B and the bound on the
spectral norm of ΦJ,B of Lemma 4.4. By Boole’s inequality, the overall probability
exceeds 1 − exp(−t) − 23/4 exp(−t) ≥ 1 − 3 exp(−t), which is the claimed probability.
Plugging in the spectral bounds into Theorem 4.3, we obtain

ewor−app(SXJ
B)2 ≤ sup

h/∈B

1

r(h)
+

2

|J |

(
21 (log |J |+ t)

∑
h/∈B

1

r(h)
+ 2

|J |
n

∥ΦB∥22
)
.

It remains to estimate the scaling factor for the sum.
We first show that for b ≥ 1 and t ≥ 4 we have

12 b (log b+ t) ≤ b2 exp(t) . (4.9)

Since log b ≤ b− 1 this follows from the stronger assertion

12 (b− 1 + t) ≤ b exp(t) ⇔ (exp(t)− 12) b+ 12− 12t ≥ 0 .

The left-hand side is non-decreasing in b since t ≥ 4 ≥ log(12). With b ≥ 1, it remains
to check the non-negativity for b = 1, which is satisfied for t ≥ 4 showing (4.9).

We are ready to prove an upper bound on (log j + t)/j in terms of 1/b when j :=
⌈ 12 b (log b+ t) ⌉ ≥ 12 b (log b+ t). Since (log j + t)/j is increasing with decreasing j, it
suffices to show an estimate for ℓ ≤ j such that

12 b (log b+ t) ≤ ℓ ≤ b2 exp(t) .

Such a value of ℓ ∈ R exists due to (4.9). Then it follows that

log j + t

j
≤ log ℓ+ t

ℓ
≤ 2 (log b+ t)

12 b (log b+ t)
=

1

6 b
.

13

Finally we prove an upper bound on 1/b in terms of (log j + t)/j. Since b ≥ 1 and
t ≥ 4, we have 12 b (log b+ t) ≥ 48

49⌈12 b (log b+ t)⌉. Thus

1

b
≤ 49

48

12 (log b+ t)

⌈12 b (log b+ t)⌉
≤ 13 (log j + t)

j
,

where we used j > 12 b ≥ b for log b < log j and 49 · 12/48 < 13. This completes the
proof.

In Theorem 4.5 the spectral norm of an infinite-dimensional matrix ∥ΦB∥22 occurs. We
have

∥ΦB∥22 = ∥Φ∗
B ΦB∥2 = ∥ΦB Φ∗

B∥2 ,
where the first matrix product is infinite-dimensional, whereas the second matrix-product
is finite-dimensional (may be used for computing the spectral norm numerically). In the
following lemma we use the former to show that this quantity can be upper bounded in
terms of the known quantity Sn(z) from (2.5). Note that the reconstructing property is
not needed in this lemma.

Lemma 4.6. Let B ⊆ Zd be a frequency index set and X = { k
nz mod 1}n−1

k=0 ⊆ Td a
lattice. Further let ΦB := Φ{0,...,n−1},B be as in (4.3) and Sn(z) as in (2.5). Then

1

n
∥ΦB∥22 ≤ sup

h/∈B

1

r(h)
+
√
Sn(z) .

Proof. By the definition of ΦB, we have

1

n
∥ΦB∥22 =

∥∥∥ 1
n
Φ∗

B ΦB

∥∥∥
2
=

∥∥∥[1
n

n−1∑
k=0

exp(2πi kn⟨h
′ − h, z⟩)√

r(h) r(h′)

]
h,h′ /∈B

∥∥∥
2
.

By the character property 1
n

∑n−1
k=0 exp(2πim

k
n) = δm≡n0 this evaluates to

1

n
∥ΦB∥22 =

∥∥∥[δ⟨h,z⟩≡n⟨h′,z⟩√
r(h) r(h′)

]
h,h′ /∈B

∥∥∥
2
.

Now we split this matrix into its diagonal and off-diagonal terms
1

n
∥ΦB∥22 ≤

∥∥∥diag (1

r(h)

)
h/∈B

∥∥∥
2
+
∥∥∥[δh̸=h′δ⟨h,z⟩≡n⟨h′,z⟩√

r(h) r(h′)

]
h,h′ /∈B

∥∥∥
2
.

The spectral norm of the diagonal matrix is known and for the off-diagonal matrix we
estimate it by the Frobenius norm

1

n
∥ΦB∥22 ≤ sup

h/∈B

1

r(h)
+
∥∥∥[δh̸=h′δ⟨h,z⟩≡n⟨h′,z⟩√

r(h) r(h′)

]
h,h′∈Zd

∥∥∥
F

= sup
h/∈B

1

r(h)
+
(∑

h∈Zd

∑
h′∈Zd

h′ ̸=h

δ⟨h,z⟩≡n⟨h′,z⟩

r(h) r(h′)

)1/2

= sup
h/∈B

1

r(h)
+
(∑

h∈Zd

1

r(h)

∑
ℓ∈Zd\{0}
⟨ℓ,z⟩≡n0

1

r(h+ ℓ)

)1/2
,

14

where the second term is exactly
√
Sn(z) as claimed.

Now we fix the frequency set B to be as in Corollary 3.3, where we have guaranteed
reconstructing property, allowing us to omit it in the assumptions.

Theorem 4.7. Let X = { k
nz mod 1}n−1

k=0 ⊆ Td be a lattice and Sn(z) as in (2.5).
Further, let H be the function space defined in (2.3) and fix

B :=
{
h ∈ Zd : r(h) ≤ 1

2
√

Sn(z)

}
.

For t ≥ 4, let J ⊆ {0, . . . , n− 1} be a multiset of uniformly i.i.d. drawn integers with

|J | := ⌈12 |B| (log |B|+ t)⌉ .

Then the least squares approximation defined in (4.1) using samples on the subsampled
lattice XJ satisfies with probability exceeding 1− 3 exp(−t) that

ewor−app(SXJ
B)2 ≤ 14

√
Sn(z) +

7

|B|
∑
h/∈B

1

r(h)
.

Proof. By Corollary 3.3 we know that X has the reconstructing property for B. Thus,
we can apply Theorem 4.5, where we plug in Lemma 4.6 for estimating ∥ΦB∥22 and obtain
with the desired probability

ewor−app(SXJ
B)2 ≤ sup

h/∈B

1

r(h)
+

7

|B|
∑
h/∈B

1

r(h)
+ 4

(
sup
h/∈B

1

r(h)
+
√
Sn(z)

)
.

By the definition of B, we have suph/∈B 1/r(h) ≤ 2
√

Sn(z), which, when plugged in the
above estimate, yields the assertion.

Remark 4.8. Following the same proof, it is easily seen, that Theorem 4.7 still holds if
we replace Sn(z) by any upper estimate, even though it changes the definition of B and
with that the underlying method.

Note that the occurrence of the quantity 1/|B|
∑

h/∈B 1/r(h) in Theorem 4.7 is natural,
since there exist function spaces where this is a lower bound on the sampling numbers
with |B| samples, cf. [18, Theorem 2]. Comparing the full lattice algorithm Theorem 2.1
with Theorem 4.7, both bounds depend on the term

√
Sn(z). The difference is in the

number of used samples being |J | in the new algorithm instead of n, with |J | usually far
less than n, as we will see in Section 5.

5 Application to weighted Korobov spaces

In this section we apply the general theory to weighted Korobov spaces to obtain double
the main rate of convergence for the subsampled lattice in comparison to the full lattice.

15

For dimension d ∈ N, smoothness α > 1/2, and weight parameters γ = {γu}u⊆N, the
weighted Korobov space is defined by

Hd,α,γ :=
{
f : Td → C : ∥f∥2d,α,γ =

∑
h∈Zd

rd,α,γ(h) |f̂h|2 < ∞
}
, (5.1)

with

rd,α,γ(h) := γ−1
supp(h)

∏
j∈supp(h)

|hj |2α and supp(h) :=
{
j ∈ {1, . . . , d} : hj ̸= 0

}
.

(5.2)
Here, the weight γu controls the importance of the part of the function f which only
depends on the variables xu = [xj]j∈u. We fix γ∅ := 1 such that ∥1∥d,α,γ = ∥1∥L2 . For
integer α ∈ N it is known that

∥f∥2d,α,γ =
∑

u⊆{1,...,d}

1

(2π)α|u|
1

γu

∫
[0,1]|u|

∣∣∣ ∫
[0,1]d−|u|

(∏
j∈u

∂

∂xj

)α
f(x) dx{1,...,d}\u

∣∣∣2dxu.

Korobov spaces describe a wide class of functions, with various forms of weights γ used
throughout literature, such as

• γu = 1 for all u ⊆ N: these spaces coincide with classical (unweighted) periodic
Sobolev spaces with dominating mixed smoothness, see e.g., [13];

• γu =
∏

j∈u γj with a positive sequence (γj)j≥1: these are called product weights,
see e.g., [40, 44];

• γu = Γ|u| for a sequence (Γℓ)ℓ≥0: they are called order dependent weights, see
e.g., [11];

• combining product and order dependent weights yield POD weights γu = Γ|u|
∏

j∈u γj ,
see e.g., [32, 15, 31, 16];

• including the smoothness parameter yields smoothness driven product and order
dependent (SPOD) weights γu =

∑
νu∈{1,...,α}|u| Γ∥νu∥1

∏
j∈u γj,νj , see e.g., [9, 10,

19].

For the classical periodic Sobolev spaces of dominating mixed smoothness, it is known
that the worst-case error behaves asymptotically as n−α(log n)α(d−1) when the approx-
imation is based on n measurements from arbitrary linear functionals. This includes
function evaluations as well as Fourier coefficients, see e.g., [38] or [13, Section 4.1]. It
was finally shown in [12] that the same rate of convergence can be attained when the
approximation was limited to use function evaluations. This result is a non-constructive
existence result for the points used in the approximation.

On the other hand, it was shown in [3, Proposition 3.3] that for an approximation
based on a full lattice the worst-case error can be bounded from below by n−α/2. Thus,
using the full lattice halves the polynomial rate of convergence.

16

It was already shown in [1], that the optimal polynomial rate can be recovered using
a subset of the initial lattice given that the initial lattice is large enough. In particular,
in [1] a lattice of size n ≳ |J |2/(1−1/(2α)) is necessary. We will show in Theorem 5.3
that the optimal polynomial rate (|J |/ log |J |)−α+ε can be recovered using only an initial
lattice of size n ≲ (|J |/ log |J |)2/

√
1−ε/α for any 0 < ε < α.

In order to apply our general result on subsampled lattices, we first present known
results for the full lattice. Note that the parameter α in [30] is 2α in this paper.

Theorem 5.1 ([30, Theorem 3.3]). Given n ≥ 2, d ∈ N, α > 1/2 and weights γ =
{γu}u⊆N, the generating vector z obtained from the CBC construction following [30,
Algorithm 3.2] satisfies

2ζ(2α)γ{1}

n2α
≤ Sn(z) ≤

(τλC2
λ

φ(n)

)1/λ
for all 1

2α < λ ≤ 1 ,

where φ(n) = |{z ∈ {1, . . . , n} : gcd(z, n) = 1}| is the Euler totient function (e.g., φ(n) =
n − 1 for n prime), ζ(x) =

∑∞
h=1 h

−x is the Riemann zeta function, τλ = 24αλ+1 + 1,
and

Cλ = Cd,α,γ,λ :=
∑

u⊆{1,...,d}

max{1, |u|} γλu (2ζ(2αλ))|u| . (5.3)

Proof. The trivial lower bound is obtained by keeping only the h = 0 and ℓ = [ℓ1, 0, . . . , 0]
terms in (2.5) together with z1 = 1. A CBC upper bound for Sn(z) was first proved
in [8] for product weights, in [6] for general weights, both for prime n, and in [30] for
composite n.

Applying the estimate on Sn(z) from Theorem 5.1 to Theorem 2.1 achieves the order
of convergence n−α/2+ε for the full lattice, which is half the optimal order.

Lemma 5.2 ([30, Lemmata 5.2 and 5.3]). Let M ≥ 1, α > 1/2, and

Ad,α,γ,M :=
{
h ∈ Zd : rd,α,γ(h) ≤ M

}
.

Then we have for 1/(2α) < λ < 1 and Cλ = Cd,α,γ,λ from (5.3) that

(γ{1}M)1/(2α) ≤ |Ad,α,γ,M | ≤ CλM
λ

and
1

|Ad,α,γ,M |
∑

h/∈Ad,α,γ,M

1

rd,α,γ(h)
≤

(C
1/λ
λ

γ
1/(2αλ)
{1}

· λ

1− λ

)(1

M

)− 1
2αλ

.

In the original [30, Lemma 5.2] the constant Cλ equals
∑

u⊆{1,...,d} γ
λ
u (2ζ(2αλ))|u|. Here

we used an upper estimate (5.3) to simplify our presentation.
We now present the main result of this section which bounds the worst-case error for

a subsampled lattice achieving optimal polynomial rate using the smallest initial lattice
size.

17

Theorem 5.3. Let H be the Korobov function space defined in (5.1) with α > 1/2 and
weights γ = (γu)j∈u. Let X = { k

nz mod 1}n−1
k=0 ⊆ Td be a lattice with n ≥ 7 sufficiently

large so that Sn(z) = Sd,α,γ,n(z) ≤ 1/4, and let

B := Bd,α,γ,n :=
{
h ∈ Zd : rd,α,γ(h) ≤

1

2
√
Sn(z)

}
.

For t ≥ 4, let J ⊆ {0, . . . , n− 1} be a multiset of uniformly i.i.d. drawn integers with

|J | := ⌈12 |B| (log |B|+ t)⌉ .

Then the least squares approximation defined in (4.1) using samples on the subsampled
lattice XJ satisfies with probability exceeding 1− 3 exp(−t) that

ewor−app(SXJ
B)2 ≤ 7

(
1 +

C
1/λ
λ

γ
1/(2αλ)
{1}

· λ

1− λ

)
(13Cλ)

1
2αλ2

(log |J |+ t

|J |

) 1
2αλ2 (5.4)

for all 1/(2α) < λ < 1, with Cλ = Cd,α,γ,λ from (5.3). Moreover, if z is constructed
according to [30, Algorithm 3.2], we have (with φ(n) again denoting the Euler totient
function)

(φ(n))
1

4αλ logφ(n) ≲ |J | ≲ nαλ log n , (5.5)

and hence (|J |
log |J |

) 1
αλ

≲ n and φ(n) ≲
(|J |
log |J |

)4αλ
(5.6)

Proof. For the index set B with radius M := 1/(2
√
Sn(z)) ≥ 1, Lemma 5.2 gives for all

1/(2α) < λ < 1,

(γ{1}M)1/(2α) ≤ |B| ≤ CλM
λ ⇔

γ{1}

|B|2α
≤ 1

M
≤

(Cλ

|B|

)1/λ
.

Theorem 4.7 and Lemma 5.2 then yield

ewor−app(SXJ
B)2 ≤ 7

M
+ 7

(C
1/λ
λ

γ
1/(2αλ)
{1}

· λ

1− λ

)(1

M

) 1
2αλ

≤ 7
(
1 +

C
1/λ
λ

γ
1/(2αλ)
{1}

· λ

1− λ

)(Cλ

|B|

) 1
2αλ2 ,

from which the bound (5.4) is obtained using the upper bound on 1/|B| in (4.8).
Next we relate |B| to the bounds on M = 1/(2

√
Sn(z)) from Theorem 5.1, to obtain(φ(n)

τλC
2
λ

) 1
4αλ

(γ{1}
2

) 1
2α ≤

(γ{1}

2
√
Sn(z)

) 1
2α ≤ |B| ≤ Cλ

(1

2
√
Sn(z)

)λ

≤ Cλ n
αλ

(8ζ(2α)γ{1})λ/2
.

Since 12 |B| (log |B|+ t) ≤ |J | ≤ 13 |B| (log |B|+ t), we obtain (5.5) and (5.6).

18

In particular, for n prime, we have (|J |/ log |J |)1/(αλ) ≲ n ≲ (|J |/ log |J |)4αλ. Substi-
tuting 1/(4αλ2) = α− ε for 0 < ε < α, we obtain the convergence rate (|J |/ log |J |)−α+ε

with (|J |/ log |J |)2
√

1−ε/α ≲ n ≲ (|J |/ log |J |)2/
√

1−ε/α, where the exponent is arbitrarily
close to 2.

Note that for small n it is possible for the theoretically defined value of |J | to be bigger
than n. Additionally, the constants in the asymptotic bounds (5.5) and (5.6) are quite
loose. Later in our numerical experiments we will choose instead |J | = ⌈

√
n log(n)⌉.

6 Implementation and computational cost

The goal of subsampling from a lattice is to make use of the underlying structure, where
fast and memory-efficient algorithms are applicable. Without that structure uniformly
generated random points would suffice for a similar error bound, cf. [29, 27].

Both the least squares approximation and the kernel method involve solving a system
of equations. For the full lattice closed form solutions are known, but for the subsampled
lattice it seems that an analytical inverse is not available. Direct solvers would have a
cubic runtime with respect to the number of points |J |. Instead, we will apply iterative
methods: the least squares (LSQR) [35] and the conjugate gradient (CG) [17] methods,
where only matrix-vector products are needed. The following result bounds the number
of necessary iterations depending on the desired accuracy.

Theorem 6.1 ([17, Theorem 3.1.1]). Let A be a Hermitian positive definite matrix with
condition number κ2(A) = λmax(A)/λmin(A). Further, let x(i) be the i-th iterate of the
conjugate gradient (CG) method applied to the system of equations Ax̃ = b. Then it holds

∥x(i) − x̃∥2√
κ2(A)∥x̃∥2

≤

√
(x(i) − x̃)∗A (x(i) − x̃)

(x̃)∗Ax̃
≤ 2

(√κ2(A)− 1√
κ2(A) + 1

)i
≤ 2 exp

(−2i√
κ2(A)

)
.

Proof. The first inequality follows from λmin(B)∥x∥2 ≤ ∥Bx∥2 ≤ λmax(B)∥x∥2 for
any Hermitian positive definite matrix B and vector x. The second inequality is the
statement of [17, Theorem 3.1.1]. For the last inequality, we need that for x ≥ 1

x− 1

x+ 1
≤ exp

(
− 2

x

)
,

or equivalently

g(x) := log
(x− 1

x+ 1

)
+

2

x
≤ 0 .

For x approaching 1 the statement is true. For x > 1, we have g′(x) > 0. Together with
limx→∞ g(x) = 0 this gives the assertion.

The LSQR method is analytically equivalent to applying CG to the normal equation but
in a numerically more stable manner, cf. [35]. Thus the iteration bound in Theorem 6.1
holds for LSQR with the minimal and maximal eigenvalue replaced by the squared singular
numbers.

19

6.1 Fast least squares approximation with subsampled lattices

In this section we discuss how to compute the least squares approximation for a subsam-
pled lattice making use of the Fast Fourier Transform (FFT). Let B := {h ∈ Zd : r(h) ≤
M} and

SXJ
B f =

∑
h∈B

ĝh exp(2πi⟨h, ·⟩)

be defined in (4.1). The approximation is computed once the Fourier coefficients ĝB =
(ĝh)h∈B representing the approximation are obtained. Essential is the set of frequencies
B. Because of the downward-closed structure, this can be set up incrementally in dimen-
sion. For the step from dimension j to j+1, we have frequencies supported in the first j
dimensions and for every one of them we seek all hj+1 such that rd,α,γ([h1, . . . , hj , hj+1,
0, . . . , 0]) ≤ M . This has a computational cost of O(d |B|). We then compute the coeffi-
cients by solving the system of equations in Lemma 4.1 via LSQR.

By (4.6) in Lemma 4.4, we have, with |J | sufficiently large and high probability, that
κ2(L

∗
J,B LJ,B) = λmax(L

∗
J,B LJ,B)/λmin(L

∗
J,B LJ,B) ≤ 3. Fixing the desired accuracy to

machine precision eps = 10−16, we obtain by Theorem 6.1 a fixed number of iterations
for LSQR. Each iteration uses one matrix-vector product with LJ,B and one with L∗

J,B. For
the full lattice J = {1, . . . , n} this matrix-vector product simplifies to a one-dimensional
FFT with a computational cost of

O(n log n+ |B|) flops and O(n) memory requirements ,

which is known as the Lattice Fast Fourier Transform (LFFT), cf. [26]. The multiplication
with the matrix corresponding to the subsampled lattice can be done using the full lattice
by

LJ,B = PLB with P =


1 0 0 . . . 0 0 0
0 0 1 . . . 0 0 0

...
...

0 0 0 . . . 0 1 0
j1 j2 j|J |


1
2
...
|J |

∈ {0, 1}|J |×n , (6.1)

which has thus the same computational cost. Note, we essentially have an FFT where
we only use parts of the result. This is known as “pruned FFT”, which are partial FFTs
with cost O(n log |J |). As current FFT implementations are highly tuned this gain is not
observed in practice.

With |J | ∼
√
n logn and |B| ∼

√
n as in Theorem 5.3 we obtain the computational

cost in the upper two rows of Table 1 when using the LFFT compared to the naive matrix-
vector product. The iteration count does not appear here as it is bounded by a general
constant independent of the number of points.

Note, when using the full lattice an iterative solver is not needed, since we have by
the reconstructing property (L∗

B L∗
B)

−1 = (1/n) I. This can be also viewed as LSQR
converging with one iteration because κ2(L

∗
B LB) = 1 in Theorem 6.1. Thus, using the

full lattice has computational cost O(n log n) as well.

20

Subsampled method Flops Memory

least squares approx. (naive) O(|J ||B|) = O(n log n) O(|J ||B|) = O(n log n)

least squares approx. using LFFT O(n log n) O(n)

kernel method (naive) O(r |J |2) = O(r n log n) O(|J |2) = O(n log n)

kernel method using FFT O(r n logn) O(n)

Table 1: Computational cost for the least squares approximation SXJ
B and the kernel

method AXJ
ker with a subsampled lattice of size |J | = ⌈

√
n log n⌉ utilizing the

FFT compared to the naive matrix-vector product. Here r is the number of
iterations depending on the condition number of the kernel matrix.

6.2 Fast kernel method with subsampled lattices

We further comment on the kernel method, which we introduced in Section 2 for the
full lattice. Since Hd,α,γ is a reproducing kernel Hilbert space, it has an associated
reproducing kernel K(·, ·) = Kd,α,γ(·, ·). For integer smoothness α ∈ N, a simple closed
form is known:

K(x,y) =
∑

u⊆{1,...,d}

γu
∏
j∈u

ηα(xj , x
′
j) with ηα(x, x

′) =
(2π)2αB2α((x− x′) mod 1)

(−1)α+1(2α)!
,

where B2α is the Bernouilli polynomial of degree 2α.
The kernel approximation of f based on the sampling set XJ is defined analogously

to (2.7) by

AXJ
ker f :=

∑
k∈J

ak K(·, knz mod 1) with a = (ak)k∈J = K−1
J fJ (6.2)

where KJ = [K(knz mod 1, k
′

n z mod 1)]k,k′∈J is the so-called kernel matrix and fJ =

[f(knz mod 1)]k∈J .
As discussed in Section 2, the kernel method is optimal in the worst-case setting for

any given set of points. In particular, the bound from Theorem 5.3 applies as well,
since ewor−app(AXJ

ker) ≤ ewor−app(SXJ
B). Similar to LJ,B, a fast multiplication with the

kernel matrix for the full lattice is known, since K{0,...,n−1} is a circulant matrix, cf. [20,
Table 1], with a computational cost of

O(n log n) flops and O(n) memory requirements.

The algorithm for the full lattice can be used for the subsampled kernel matrix as well.
We have

KJ = PK{0,...,n−1}P
∗ ,

with P as in (6.1). The cost for evaluating the kernel will depend on the structure of
the weights γu, ranging from linear in d for product weights to quadratic in d for POD
and SPOD weights, see [20, Table 1].

21

In contrast to the least squares matrix LJ,B, the condition number of the kernel matrix
KJ grows in the number of points, resulting in the need for many iterations or the
necessity of preconditioning, cf. [43, Section 12.2]. Thus, the number of necessary CG
iterations cannot be bounded by a general constant according to Theorem 6.1.

With |J | ∼
√
n logn as in Theorem 5.3, we obtain the computational cost in the lower

two rows of Table 1 when using the FFT compared to the naive matrix-vector product
when using r iterations.

6.3 Comparison to full-lattice methods

From Theorem 5.3 we know that subsampling allows for a better sampling complexity.
However, picking the best method in regards to computational cost also depends on
whether functions evaluations are expensive. To discuss this balancing, we split the
computations into five steps and address their individual computational cost. This gives
the following for the least squares approximation and the kernel method with the full
and subsampled lattice, which is summarized in Table 2.

(i) Point construction. All methods use the CBC construction from [14] with different
cost depending on the type of weights as shown in the first row of Table 2. The
additional cost for creating the subsampled indices is negligible.

(ii) The sampling of the function to approximate. When fcost models the cost of a single
function evaluation, this has to be multiplied by the number of samples used by
the approximation. For the full lattice these are n points and for the subsampled
lattice we have |J | ∼

√
n logn points, cf. Theorem 5.3.

(iii) The function-independent setup. These computations may depend on a pre-defined
function class but can be used for any function thereof. This becomes important
when multiple instances need to be approximated.

For the least squares approximation this involves the construction of the frequency
index set B and the computation of the inner products with the generating vector z.
As discussed in Section 6.1 this can be done incrementally in dimension with a cost
of d |B|, where |B| ∼

√
n in our case.

For the kernel method the entries of the kernel matrix KJ have to be computed,
where the cost of one single kernel evaluation depends on the weight parameters,
cf. [20, Table 1]. Because we have K(knz mod 1, k

′

n z mod 1) = K(k−k′

n z mod 1,0),
the number of different values equals |{(k − k′) mod n : k, k′ ∈ J}|. For the full
lattice this evaluates to n. For the randomly subsampled lattice with |J | ∼

√
n logn

we might have |{(k − k′) mod n : k, k′ ∈ J}| = n as well.

(iv) The computation of the coefficients. At this step the approximation is obtained
from the sampled function values using the function-independent setup and encoded
in a respective representation. The least squares approximation is described by its
Fourier coefficients [ĝh]h∈B and the kernel method by the coefficients [ak]k∈J (where
J = {0, . . . , n−1} for the full lattice). These coefficients are defined by the solution

22

Computation step SXJ
B SX

B AXJ
ker AX

ker

point construction dn log n+ diαjn

sampling fcost
√
n logn fcostn fcost

√
n logn fcostn

function-indep. setup d
√
n diαjn

computing coefficients n logn rn log n n logn

evaluation d
√
n diαj√n logn diαjn

Table 2: Computational cost for the least squares approximation SXJ
B and the kernel

method AXJ
ker with a full and subsampled lattice of size |J | = ⌈

√
n log n⌉. Here

r is the number of iterations depending on the condition number of the kernel
matrix and fcost is the cost of a single function evaluation. We have (i, j) = (1, 0)
for product weights, (i, j) = (2, 0) for POD weights, and (i, j) = (2, 2) for SPOD
weights.

of the systems of equations in Lemma 4.1 and (2.7), respectively. For the full lattice
the involved inverse matrices are known in closed form as discussed in Section 6.1
and Section 2, which results in a computational cost of an FFT for the computation
of the coefficients.

For the subsampled methods we use the iterative schemes described in Section 6.1
and Section 6.2. In case of the least squares method, the number of iterations is
bounded and by a general constant. For kernel method more iterations are needed
when the number of points increases, as the kernel matrix is worse conditioned for
an increasing number of points. In Table 2 the number of iterations for the kernel
method is denoted by r.

(v) The evaluation of the approximation. This describes the cost of evaluating the
approximation in a single unseen data point x ∈ Td. For the least squares approxi-
mation this involves evaluating the sum (SXJ

B f)(x) =
∑

h∈B ĝh exp(2πi⟨h,x⟩) with
a cost of d |B|, with |B| ∼

√
n in our case.

For the kernel method we need to evaluate
∑

k∈J ak K(x, knz mod 1), which needs
|J | evaluations of the kernel with |J | = {0, . . . , n− 1} for the full lattice.

Note that for a given n all methods have the L2 worst-case error proportional to 4
√

Sn(z),
cf. Theorems 2.1 and 5.3.

Apart from user-defined benchmark-functions, the cost of function evaluations fcost is
often expensive, like when solving a PDE or taking in-field measurements, see e.g. [32].
Then the approximation serves as a surrogate model and a fast evaluation of the ap-
proximation is the priority, which favors the methods using the subsampled lattice. The
overload of using an iterative solver is also reasonable, in particular for the least squares
approximation, where the number of iterations can be bounded by a general constant.

23

7 Numerical results

In this section we test the proposed algorithms in order to verify our theoretical results
by comparing

• the classical lattice algorithm (2.1) using the full lattice, with frequency index set
A = {h ∈ Zd : rd,α,γ(h) ≤ M} and M = 1/

√
Sn(z),

• the least squares approximation (4.1) using the full and subsampled lattice where
the frequency index set B = {h ∈ Zd : rd,α,γ(h) ≤ M} and M = 1/(2

√
Sn(z)) is

chosen as in Theorem 5.3, and

• the kernel method (2.7) with both the full and subsampled lattice.

With n being the next biggest prime from a power of 2, we compute the generating vector
for a lattice using the CBC algorithm from [14] rather than the original algorithm from [6].
The new algorithm has the advantages that it is much simpler to implement, is extensible
to any dimension d, and (especially for SPOD weights) is cheaper to run. Empirically
it gives similar L2-approximation error bounds, but equivalent theoretical error bounds
are yet to be proven. For the methods using subsampled points, we generate a random
subset of size |J | = ⌈

√
n log n⌉, which is of the same order as in Theorem 5.3 but ignores

the involved constants. The L2-error is then estimated using 50 random shifts of the
initial lattice,∫

Td

|(f −A(f))(x)|2 dx ≈ 1

50n

50∑
i=1

n−1∑
k=0

|(f −A(f))((knz +∆i) mod 1)|2 ,

where ∆i ∈ Td for i = 1, . . . , 50 are chosen independently and uniformly random. For
the kernel method the evaluation at the shifted lattice can be done by the same fast
methods as for the original lattice used in the approximation, cf. [20, Section 5]. The
least squares approximation can be evaluated at any lattice fast using the LFFT.

The implementation is done in Julia with the CG and LSQR implementation used from
[4]. All the computations were carried out on a high performance computer cluster [37]
with eight parallel threads.

7.1 Kink function

For a first numerical experiment we choose the target “kink” function

f(x) =
(53/415

4
√
3

)d
d∏

j=1

max
{
0,

1

5
−
(
xj −

1

2

)2}
(7.1)

in dimensions d = 2 and d = 5. The 2-dimensional example is depicted in Figure 2 (left).
This function was considered in [3, 23, 1] and we know that f ∈ Hd,3/2−ε,γ(T

d) for ε > 0
and γu = 1 for all u ⊆ {1, . . . , d}.

24

(0, 0)

(0, 1)
(1, 1)

0

1

2

(0, 0)

(0, 1)
(1, 1)

1

2

Figure 2: “Kink” function (7.1) (left) and “reciprocal” function (7.2) with q = 2.5 (right),
both in dimension d = 2.

For the approximation we chose product weights with parameters

α = 1 and γj =
1

2
.

The result for dimensions d = 2 and d = 5 are depicted in Figure 3.
We start by evaluating the 2-dimensional example, hoping to observe the theoretical

convergence rate. All rates displayed in the legend were estimated by fitting the last ten
data points.

•: For (n, 4
√

Sn(z)) we expect a decay rate arbitrarily close to 1/2 according to The-
orem 5.1. The numerics yield a rate of 0.47 affirming this behavior.

▼, ■: The classical lattice algorithm and the least squares method using the full lattice
differ only by a factor of two in the radius of their frequencies. According to
Theorem 2.1 they behave at least as well as (n, 4

√
Sn(z)) with a rate of 1/2. In

fact, the same rate of 0.7 is observed in both methods and they only differ in the
corresponding constant. The better than expected rate can be explained by these
methods “picking up” the smoothness. Since the smoothness does not affect the
shape of the frequency index set, the method for higher smoothness is the same. In
our case we have smoothness 3/2− ε, of which half is “picked up”. That it is only
half is intuitively explained by full lattices only achieving half the optimal order of
convergence, cf. [3].

▲: For the kernel method using the full lattice we know by the discussion at the end
of Section 2 that it performs at least as well as the classical lattice algorithm with
a rate of 1/2 in the worst-case setting. It was further shown in [41] that the kernel
method (using any set of points) doubles the rate of convergence when the function
is doubly as smooth. In our case we do not have quite double the smoothness, but
still see this effect numerically with a rate of 1.01. Note, that the experiment is
only about the approximation error of one individual function which could perform
better than the worst-case error.

25

◦: For the subsampled methods we expect to achieve the same worst-case error but
with fewer points. With (|J |/ log |J |, 4

√
Sn(z)), we observe a rate of 0.93, which is

about double of 0.47 from the full lattice (n, 4
√

Sn(z)) (•).

□: According to Theorem 4.7 the least squares approximation using the subsampled
lattice has at least the same rate as (|J |/ log |J |, 4

√
Sn(z)) (◦), which was 0.93.

For reasons explained above, the least squares method is able to “pick up” the
smoothness, which is 3/2− ε. Numerically we observe a rate of 1.37.

△: The kernel method performs at least as well as any other method using the same
points. Since the least squares method using the subsampled lattice has at least
linear decay, this holds for the kernel method using the subsampled points as well.
Additionally the doubling of the rate effect from [41] applies again. Numerically
we observe the best rate among all methods with 1.47.

The 5-dimensional example shows the same qualitative but not quantitative behavior,
as increasing the dimension makes the problem a lot harder when all dimensions are
equally important. The dimension enters logarithmically as we have for the “linear width”
an ∼ n−α(log n)(d−1)α, which is a lower bound to the worst-case error using n samples,
cf. [13]. One notable difference is a staircase-like error behavior for the classical lattice
algorithm as well as the least squares approximation. This is due to the number of
frequencies not being continuous with respect to the radius of the frequency index set.
Especially for small radii a bunch of frequencies are added at once relative to the total
number of frequencies, resulting in a jump.

7.2 Reciprocal function

For a second batch of numerical experiments we choose the d = 100 dimensional target
“reciprocal” function

f(x) =
1

a(x)
, a(x) = 1 + 0.5

d∑
j=1

j−q sin(2πxj) , (7.2)

with decay parameter q = 6 and q = 2.5. The function in two dimensions is depicted in
Figure 2 (right). This function was considered in e.g., [28, Section 4.2] and solves the
algebraic equation a(x)f(x) = 1, mimicking the features of a partial differential equation
with a random coefficient whilst avoiding the complexity of a spatial variable or the need
of a finite element solver.

For the approximation we choose POD weights with parameters

α ∈ {1, 2} and γu = |u|!
∏
j∈u

j−q .

Following the same procedure as in Section 7.1, in Figure 4 we depict the results for
q = 6, with α = 1 (top) and α = 2 (bottom). Since we deal with an analytic function,
these results are not representative for the worst-case error and therefore the doubling

26

10−6

10−5

10−4

10−3

10−2

10−1

100

102 104 106 108

1

1
2

1

1

α = 1

(|J |, ∥f −A
XJ
ker f∥L2

)
(

|J|
log |J|

)−1.47

(|J |, ∥f − S
XJ
B f∥L2

)
(

|J|
log |J|

)−1.37

(|J |, 4
√

Sn(z))
(

|J|
log |J|

)−0.93

(n, ∥f −AX
kerf∥L2

) n−1.01

(n, ∥f − SX
B f∥L2) n−0.70

(n, ∥f −AX
A f∥L2

) n−0.70

(n, 4
√

Sn(z)) n−0.47

number of points

kink function d = 2

10−4

10−3

10−2

10−1

100

101

102 104 106 108

1

1
2

1

1

α = 1

(|J |, ∥f −A
XJ
ker f∥L2)

(
|J|

log |J|

)−0.93

(|J |, ∥f − S
XJ
B f∥L2

)
(

|J|
log |J|

)−1.03

(|J |, 4
√

Sn(z))
(

|J|
log |J|

)−0.77

(n, ∥f −AX
kerf∥L2

) n−0.81

(n, ∥f − SX
B f∥L2

) n−0.53

(n, ∥f −AX
A f∥L2) n−0.52

(n, 4
√

Sn(z)) n−0.39

number of points

kink function d = 5

Figure 3: L2-error of the approximations of the kink function, with d = 2 (top) and d = 5
(bottom) with respect to the number of sampling points for the classical lattice
algorithm, the least squares method, and the kernel method using the full and
subsampled lattice.

27

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

102 104 106

1

1
2

1

1

α = 1

(|J |, ∥f −A
XJ
ker f∥L2)

(
|J|

log |J|

)−1.89

(|J |, ∥f − S
XJ
B f∥L2)

(
|J|

log |J|

)−1.65

(|J |, 4
√

Sn(z))
(

|J|
log |J|

)−0.91

(n, ∥f −AX
kerf∥L2) n−1.41

(n, ∥f − SX
B f∥L2

) n−0.84

(n, ∥f −AX
A f∥L2

) n−0.86

(n, 4
√

Sn(z)) n−0.47

number of points

reciprocal function d = 100, q = 6

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

102 103 104 105

1

1

1

2

α = 2

(|J |, ∥f −A
XJ
ker f∥L2

)
(

|J|
log |J|

)−2.80

(|J |, ∥f − S
XJ
B f∥L2

)
(

|J|
log |J|

)−2.79

(|J |, 4
√

Sn(z))
(

|J|
log |J|

)−1.60

(n, ∥f −AX
kerf∥L2

) n−1.94

(n, ∥f − SX
B f∥L2

) n−1.50

(n, ∥f −AX
A f∥L2

) n−1.45

(n, 4
√

Sn(z)) n−0.83

number of points

reciprocal function d = 100, q = 6

Figure 4: L2-error of the approximations of the reciprocal function in d = 100 dimensions
and decay parameter q = 6, with smoothness parameter α = 1 (top) and α = 2
(bottom), with respect to the number of sampling points for the classical lattice
algorithm, the least squares method, and the kernel method using the full and
subsampled lattice.

28

10−4

10−3

10−2

10−1

100

102 104 106

1

1
2

1

1

α = 2

(|J |, ∥f −A
XJ
ker f∥L2)

(
|J|

log |J|

)−1.02

(|J |, ∥f − S
XJ
B f∥L2)

(
|J|

log |J|

)−1.07

(|J |, 4
√

Sn(z))
(

|J|
log |J|

)−0.76

(n, ∥f −AX
kerf∥L2) n−0.89

(n, ∥f − SX
B f∥L2

) n−0.55

(n, ∥f −AX
A f∥L2

) n−0.51

(n, 4
√

Sn(z)) n−0.39

number of points

reciprocal function d = 100, q = 2.5

Figure 5: L2-error of the approximations of the reciprocal function in d = 100 dimensions
and with decay parameter q = 2.5 and smoothness parameter α = 2 with
respect to the number of sampling points for the classical lattice algorithm, the
least squares method, and the kernel method using the full and subsampled
lattice.

of the rate [41] becomes more apparent. The high dimension d = 100 diminishes the
rates we expected with respect to α. For α = 1 (top) the kernel method with both the
full as well as for the subsampled lattice perform a lot better than the corresponding
least squares approximation, with empirical rates of 1.41 and 1.89 versus 0.84 and 1.65,
respectively. For α = 2 (bottom), kernel method and least squares approximation with
subsampled lattice perform equally well, with empirical rates of 2.79 and 2.8, respectively.

In Figure 4 we plot the corresponding results with the relatively slow decay parameter
q = 2.5 and α = 2. This problem is considerably harder. The empirical rates drop sig-
nificantly to be just above 1 for both the kernel method and least squares approximation
with the subsampled lattice.

The frequencies used in the q = 6 example in Figure 4 by the least squares approx-
imation were nonzero only in the first 11 and 23 components for α = 1 and α = 2,
respectively, i.e., the least squares method treated the remaining dimensions as irrele-
vant, while still achieving errors of 10−6 and 10−7. For the q = 2.5 case in Figure 5
frequencies with nonzero components were encountered only in the first 52 dimensions.
This indicates that the “effective dimension” is low for the q = 6 example compared to
the q = 2.5 example. In this case all the methods for the q = 2.5 example behave a
lot more like (n,Sn(z)) for the full lattice and (|J |,Sn(z)) for the subsampled lattice, in
comparison to the q = 6 example. It is also an example in which the subsampled least
squares error shows a slightly faster empirical rate of 1.07 than the subsampled kernel
method empirical rate 1.02.

29

100

101

102

103

102 103 104 105

SXJ
B f

AXJ
ker f

nu
m

be
r

of
it

er
at

io
ns

|J |

Figure 6: Number of iterations with respect to the number of points for subsampled least
squares approximation and kernel method.

7.3 Computational complexity

Since we are interested in the computational complexity, we measure the computation
time and counted the number of iterations for the presented methods for approximating
the reciprocal function with q = 2.5 and α = 2. Both the LSQR method for the least
squares approximation and the CG method for the kernel method were equipped with a
stopping criterion of the relative error being smaller than 10−8. The iteration count of
the subsampled methods is depicted in Figure 6. While the least squares approximation
never exceeded 16 iterations, the kernel method used up to 471 iterations, growing like
|J |0.57. This affirms the predicted cost with respect to the number of iterations in Table 1.

For the actual cost, including precomputation and the matrix-vector products, we
measure the elapsed time. For the subsampled lattice we used the naive matrix-vector
implementation as well as the FFT implementation discussed in Section 6. Further, we
modeled two scenarios: function evaluations to have no cost to evaluate and second,
needing 0.1 seconds to evaluate. The latter resembles practical examples with func-
tion evaluations corresponding to PDE solutions or similar. The results are depicted in
Figure 7.

Without considering the cost for function evaluations the kernel method with the full
lattice is the fastest when the number of points is large enough. This is again due to
making use of the higher smoothness of the function for a faster rate of decay. The cost
for all subsampled methods differ only in multiplicative constants for the error regardless
of using the FFT or naive matrix-vector products. The high overhead of the kernel method
is due to the cost of evaluating the kernel and far more iterations needed for iterative
solver, since the kernel matrix is not as well-conditioned as the least squares matrix.
In terms of memory, we stored the subsampled matrices for the naive implementation,
which required us to stop at an earlier number of points as we werer limited to use 512
Gigabytes of memory. This could be overcome by computing the matrix on the fly but
would add a larger computational overload.

30

10−4

10−3

10−2

10−1

100

10−2 100 102
10−4

10−3

10−2

10−1

100

100 102 104

L
2
-e

rr
or

time in seconds

SX
B f

AX
kerf

S
XJ
B f (LFFT)

S
XJ
B f (naive)

A
XJ
ker f (FFT)

A
XJ
ker f (naive)

time in seconds

Figure 7: L2-error of the numerical experiment with respect to the computation time.
Left: function evaluation costs are not accounted for. Right: cost of single
function evaluation is 0.1 seconds.

With the addition of a small cost of 0.1 seconds for function evaluations, the graph
resembles more the sampling complexity cost in Figure 5. Thus, in the right-hand setting
when function evaluations are costly, the overhead of using an iterative solver with the the
subsampling techniques of this paper is justified. If the function in question is smooth,
the kernel method excels due to the doubling of the rate effect [41].

8 Concluding remarks

In this paper we used random subsampling to regain the optimal polynomial order of
convergence for lattices while still maintaining the structure to apply fast Fourier al-
gorithms. The focus is on having a small initial lattice size, which determines the
computational complexity of the approximation algorithms. We used the least squares
approximation and the kernel method. For Korobov spaces we achieve the optimal poly-
nomial order of convergence (|J |/ log |J |)−α+ε for 0 < ε < α, with the initial lattice size
n ≲ (|J |/ log |J |)2/

√
1−ε/α, which is arbitrarily close to quadratic in terms of the actual

subsampled point set size |J |. This improves on earlier results in [1], where there is a
polynomial gap for the initial lattice size.

Similar to [1] one could use further subsampling techniques from [2] or even the non-
constructive techniques from [12] in order to improve on the logarithmic rate in the error
bound. Further, in the numerics the constants for the oversampling were ignored while
still achieving the theoretical error rates. This indicates possible improvement for the
constants.

Acknowledgement. We acknowledge the financial support from the Australian Re-
search Council Discovery Project DP240100769. This research includes computations
using the computational cluster Katana supported by Research Technology Services at
UNSW Sydney.

31

References

[1] F. Bartel, L. Kämmerer, D. Potts, and T. Ullrich. “On the reconstruction of func-
tions from values at subsampled quadrature points”. In: Mathematics of Computa-
tion 93.346 (Aug. 2023), pp. 785–809. issn: 1088-6842. doi: 10.1090/mcom/3896.

[2] F. Bartel, M. Schäfer, and T. Ullrich. “Constructive subsampling of finite frames
with applications in optimal function recovery”. In: Applied and Computational
Harmonic Analysis 65 (July 2023), pp. 209–248. issn: 1063-5203. doi: 10.1016/
j.acha.2023.02.004.

[3] G. Byrenheid, L. Kämmerer, T. Ullrich, and T. Volkmer. “Tight error bounds for
rank-1 lattice sampling in spaces of hybrid mixed smoothness”. In: Numer. Math.
136.4 (2017), pp. 993–1034. issn: 0029-599X. doi: 10.1007/s00211-016-0861-7.

[4] J. Chen, H. Stoppels, H. Ranocha, J. López, et al. IterativeSolvers.jl Julia package.
https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl. 2025.

[5] A. Cohen and G. Migliorati. “Optimal weighted least-squares methods”. In: The
SMAI journal of computational mathematics 3 (Oct. 2017), pp. 181–203. issn:
2426-8399. doi: 10.5802/smai-jcm.24.

[6] R. Cools, F. Y. Kuo, D. Nuyens, and I. H. Sloan. “Lattice algorithms for multi-
variate approximation in periodic spaces with general weight parameters”. In: 75
years of mathematics of computation. Vol. 754. Contemp. Math. Amer. Math. Soc.,
[Providence], RI, 2020, pp. 93–113. isbn: 978-1-4704-5163-9. doi: 10.1090/conm/
754/15150.

[7] J. Dick, P. Kritzer, and F. Pillichshammer. Lattice rules—numerical integration,
approximation, and discrepancy. Vol. 58. Springer Series in Computational Math-
ematics. With an appendix by Adrian Ebert. Springer, Cham, 2022, pp. xvi+580.
isbn: 978-3-031-09951-9. doi: 10.1007/978-3-031-09951-9.

[8] J. Dick, P. Kritzer, F. Y. Kuo, and I. H. Sloan. “Lattice-Nyström method for
Fredholm integral equations of the second kind with convolution type kernels”. In:
J. Complexity 23.4-6 (2007), pp. 752–772. issn: 0885-064X,1090-2708. doi: 10.
1016/j.jco.2007.03.004.

[9] J. Dick, F. Y. Kuo, Q. T. Le Gia, D. Nuyens, and C. Schwab. “Higher Order
QMC Petrov–Galerkin Discretization for Affine Parametric Operator Equations
with Random Field Inputs”. In: SIAM Journal on Numerical Analysis 52.6 (Jan.
2014), pp. 2676–2702. issn: 1095-7170. doi: 10.1137/130943984.

[10] J. Dick, F. Y. Kuo, Q. T. Le Gia, and C. Schwab. “Multilevel Higher Order
QMC Petrov–Galerkin Discretization for Affine Parametric Operator Equations”.
In: SIAM Journal on Numerical Analysis 54.4 (Jan. 2016), pp. 2541–2568. issn:
1095-7170. doi: 10.1137/16m1078690.

[11] J. Dick, I. H. Sloan, X. Wang, and H. Woźniakowski. “Good Lattice Rules in
Weighted Korobov Spaces with General Weights”. In: Numerische Mathematik
103.1 (Feb. 2006), pp. 63–97. issn: 0945-3245. doi: 10.1007/s00211-005-0674-6.

32

https://doi.org/10.1090/mcom/3896
https://doi.org/10.1016/j.acha.2023.02.004
https://doi.org/10.1016/j.acha.2023.02.004
https://doi.org/10.1007/s00211-016-0861-7
https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl
https://doi.org/10.5802/smai-jcm.24
https://doi.org/10.1090/conm/754/15150
https://doi.org/10.1090/conm/754/15150
https://doi.org/10.1007/978-3-031-09951-9
https://doi.org/10.1016/j.jco.2007.03.004
https://doi.org/10.1016/j.jco.2007.03.004
https://doi.org/10.1137/130943984
https://doi.org/10.1137/16m1078690
https://doi.org/10.1007/s00211-005-0674-6

[12] M. Dolbeault, D. Krieg, and M. Ullrich. “A sharp upper bound for sampling num-
bers in L2”. In: Applied and Computational Harmonic Analysis 63 (Mar. 2023),
pp. 113–134. issn: 1063-5203. doi: 10.1016/j.acha.2022.12.001.

[13] D. Dũng, V. N. Temlyakov, and T. Ullrich. Hyperbolic cross approximation. Ad-
vanced Courses in Mathematics. CRM Barcelona. Edited and with a foreword by
Sergey Tikhonov. Birkhäuser/Springer, Cham, 2018, pp. xi+218. isbn: 978-3-319-
92240-9. doi: 10.1007/978-3-319-92240-9.

[14] A. D. Gilbert and I. H. Sloan. “A new CBC-algorithm”. In: work in progress (2025).

[15] I. G. Graham, F. Y. Kuo, J. A. Nichols, R. Scheichl, C. Schwab, and I. H. Sloan.
“Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal ran-
dom coefficients”. In: Numerische Mathematik 131.2 (Dec. 2014), pp. 329–368. issn:
0945-3245. doi: 10.1007/s00211-014-0689-y.

[16] I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan. “Circulant
embedding with QMC: analysis for elliptic PDE with lognormal coefficients”. In:
Numerische Mathematik 140.2 (May 2018), pp. 479–511. issn: 0945-3245. doi:
10.1007/s00211-018-0968-0.

[17] A. Greenbaum. Iterative methods for solving linear systems. Vol. 17. Frontiers in
Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997, pp. xiv+220. isbn: 0-89871-396-X. doi: 10 . 1137 / 1 .
9781611970937.

[18] A. Hinrichs, D. Krieg, E. Novak, and J. Vybíral. “Lower bounds for integration
and recovery in L2”. In: J. Complexity 72 (2022), Paper No. 101662, 15. issn:
0885-064X,1090-2708. doi: 10.1016/j.jco.2022.101662.

[19] V. Kaarnioja, F. Y. Kuo, and I. H. Sloan. “Uncertainty Quantification Using Pe-
riodic Random Variables”. In: SIAM Journal on Numerical Analysis 58.2 (Jan.
2020), pp. 1068–1091. issn: 1095-7170. doi: 10.1137/19m1262796.

[20] V. Kaarnioja, Y. Kazashi, F. Y. Kuo, F. Nobile, and I. H. Sloan. “Fast approxima-
tion by periodic kernel-based lattice-point interpolation with application in uncer-
tainty quantification”. In: Numerische Mathematik 150.1 (Nov. 2021), pp. 33–77.
issn: 0945-3245. doi: 10.1007/s00211-021-01242-3.

[21] L. Kämmerer. High Dimensional Fast Fourier Transform Based on Rank-1 Lattice
Sampling. Dissertation. Universitätsverlag Chemnitz, 2014. isbn: 978-3-944640-41-
9. url: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-157673.

[22] L. Kämmerer, D. Potts, and T. Volkmer. “Approximation of multivariate periodic
functions by trigonometric polynomials based on rank-1 lattice sampling”. In: J.
Complexity 31 (2015), pp. 543–576. doi: 10.1016/j.jco.2015.02.004.

[23] L. Kämmerer, T. Ullrich, and T. Volkmer. “Worst case recovery guarantees for
least squares approximation using random samples”. In: Constr. Approx. 54 (2021),
pp. 295–352. doi: 10.1007/s00365-021-09555-0.

33

https://doi.org/10.1016/j.acha.2022.12.001
https://doi.org/10.1007/978-3-319-92240-9
https://doi.org/10.1007/s00211-014-0689-y
https://doi.org/10.1007/s00211-018-0968-0
https://doi.org/10.1137/1.9781611970937
https://doi.org/10.1137/1.9781611970937
https://doi.org/10.1016/j.jco.2022.101662
https://doi.org/10.1137/19m1262796
https://doi.org/10.1007/s00211-021-01242-3
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-157673
https://doi.org/10.1016/j.jco.2015.02.004
https://doi.org/10.1007/s00365-021-09555-0

[24] L. Kämmerer. “Reconstructing multivariate trigonometric polynomials from sam-
ples along rank-1 lattices”. In: Approximation Theory XIV: San Antonio 2013.
Springer. 2014, pp. 255–271.

[25] L. Kämmerer. “A fast probabilistic component-by-component construction of ex-
actly integrating rank-1 lattices and applications”. In: arXiv:math/2012.14263 (2020).

[26] L. Kämmerer, S. Kunis, and D. Potts. “Interpolation lattices for hyperbolic cross
trigonometric polynomials”. In: Journal of Complexity 28.1 (Feb. 2012), pp. 76–92.
issn: 0885-064X. doi: 10.1016/j.jco.2011.05.002.

[27] L. Kämmerer, T. Ullrich, and T. Volkmer. “Worst-case Recovery Guarantees for
Least Squares Approximation Using Random Samples”. In: Constructive Approx-
imation 54.2 (Aug. 2021), pp. 295–352. issn: 1432-0940. doi: 10.1007/s00365-
021-09555-0.

[28] A. Keller, F. Y. Kuo, D. Nuyens, and I. H. Sloan. “Regularity and Tailored Regu-
larization of Deep Neural Networks, with application to parametric PDEs in uncer-
tainty quantification”. In: arXiv:math/2502.12496 (2025). doi: 10.48550/arXiv.
2502.12496.

[29] D. Krieg and M. Ullrich. “Function Values Are Enough for L2-Approximation”. In:
Foundations of Computational Mathematics 21.4 (Dec. 2020), pp. 1141–1151. issn:
1615-3383. doi: 10.1007/s10208-020-09481-w.

[30] F. Y. Kuo, W. Mo, and D. Nuyens. “Constructing Embedded Lattice-Based Al-
gorithms for Multivariate Function Approximation with a Composite Number of
Points”. In: Constructive Approximation 61.1 (Apr. 2024), pp. 81–113. issn: 1432-
0940. doi: 10.1007/s00365-024-09688-y.

[31] F. Y. Kuo and D. Nuyens. “Application of Quasi-Monte Carlo Methods to Elliptic
PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementa-
tion”. In: Foundations of Computational Mathematics 16.6 (Sept. 2016), pp. 1631–
1696. issn: 1615-3383. doi: 10.1007/s10208-016-9329-5.

[32] F. Y. Kuo, C. Schwab, and I. H. Sloan. “Quasi-Monte Carlo Finite Element Methods
for a Class of Elliptic Partial Differential Equations with Random Coefficients”. In:
SIAM Journal on Numerical Analysis 50.6 (Jan. 2012), pp. 3351–3374. issn: 1095-
7170. doi: 10.1137/110845537.

[33] F. Y. Kuo, I. H. Sloan, and H. Woźniakowski. “Lattice Rules for Multivariate
Approximation in the Worst Case Setting”. In: Monte Carlo and Quasi-Monte Carlo
Methods 2004. Springer-Verlag, pp. 289–330. isbn: 3540255419. doi: 10.1007/3-
540-31186-6_18.

[34] M. Moeller and T. Ullrich. “L2-norm sampling discretization and recovery of func-
tions from RKHS with finite trace”. In: Sampl. Theory Signal Process. Data Anal.
19.2 (2021), p. 13. issn: 2730-5716. doi: 10.1007/s43670-021-00013-3.

[35] C. C. Paige and M. A. Saunders. “Algorithm 583: LSQR: Sparse Linear Equations
and Least Squares Problems”. In: ACM Transactions on Mathematical Software 8.2
(June 1982), pp. 195–209. issn: 1557-7295. doi: 10.1145/355993.356000.

34

https://doi.org/10.1016/j.jco.2011.05.002
https://doi.org/10.1007/s00365-021-09555-0
https://doi.org/10.1007/s00365-021-09555-0
https://doi.org/10.48550/arXiv.2502.12496
https://doi.org/10.48550/arXiv.2502.12496
https://doi.org/10.1007/s10208-020-09481-w
https://doi.org/10.1007/s00365-024-09688-y
https://doi.org/10.1007/s10208-016-9329-5
https://doi.org/10.1137/110845537
https://doi.org/10.1007/3-540-31186-6_18
https://doi.org/10.1007/3-540-31186-6_18
https://doi.org/10.1007/s43670-021-00013-3
https://doi.org/10.1145/355993.356000

[36] G. Plonka, D. Potts, G. Steidl, and M. Tasche. Numerical Fourier Analysis. Applied
and Numerical Harmonic Analysis. Birkhäuser, 2018. isbn: 978-3-030-04305-6. doi:
10.1007/978-3-030-04306-3.

[37] PVC (Research Infrastructure), UNSW Sydney. Katana. en. 2010. doi: 10.26190/
669X-A286.

[38] M. Sbornik. “Approximation of functions in the space Lp and C on the torus”. In:
Mat. Sb. 58 (1962), pp. 397–414.

[39] I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford Science
Publications. The Clarendon Press, Oxford University Press, New York, 1994,
pp. xii+239. isbn: 0-19-853472-8.

[40] I. H. Sloan and H. Woźniakowski. “When Are Quasi-Monte Carlo Algorithms Effi-
cient for High Dimensional Integrals?” In: Journal of Complexity 14.1 (Mar. 1998),
pp. 1–33. issn: 0885-064X. doi: 10.1006/jcom.1997.0463.

[41] I. H. Sloan and V. Kaarnioja. “Doubling the rate: improved error bounds for orthog-
onal projection with application to interpolation”. In: BIT Numerical Mathematics
65.1 (Jan. 2025). issn: 1572-9125. doi: 10.1007/s10543-024-01049-2.

[42] J. A. Tropp. “User-Friendly Tail Bounds for Sums of Random Matrices”. In: Foun-
dations of Computational Mathematics 12.4 (Aug. 2011), pp. 389–434. issn: 1615-
3383. doi: 10.1007/s10208-011-9099-z.

[43] H. Wendland. Scattered Data Approximation. Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press, 2004.

[44] H. Woźniakowski. “Tractability of Multivariate Integration for Weighted Korobov
Spaces: My 15 Year Partnership with Ian Sloan”. In: Monte Carlo and Quasi-
Monte Carlo Methods 2008. Springer Berlin Heidelberg, 2009, pp. 637–653. isbn:
9783642041075. doi: 10.1007/978-3-642-04107-5_42.

35

https://doi.org/10.1007/978-3-030-04306-3
https://doi.org/10.26190/669X-A286
https://doi.org/10.26190/669X-A286
https://doi.org/10.1006/jcom.1997.0463
https://doi.org/10.1007/s10543-024-01049-2
https://doi.org/10.1007/s10208-011-9099-z
https://doi.org/10.1007/978-3-642-04107-5_42

	Introduction
	Classical lattice algorithm versus kernel method
	Projection property of approximation algorithms
	Error bounds for subsampled rank-1 lattices
	Application to weighted Korobov spaces
	Implementation and computational cost
	Fast least squares approximation with subsampled lattices
	Fast kernel method with subsampled lattices
	Comparison to full-lattice methods

	Numerical results
	Kink function
	Reciprocal function
	Computational complexity

	Concluding remarks

