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Abstract

We prove convergence rates of linear sampling recovery of functions in abstract Bochner
spaces satisfying weighted summability of their generalized polynomial chaos expansion coef-
ficients. The underlying algorithm is a function-valued extension of the least squares method
widely used and thoroughly studied in scalar-valued function recovery. We apply our theory
to two core problems in Computational Uncertainty Quantification. First, we address non-
intrusive approximations of solutions to parametric elliptic or parabolic PDEs with log-normal
inputs, using a finite set of particular solvers. Second, we consider approximating infinite-
dimensional holomorphic functions that arise as solutions to more general parametric PDEs
with Gaussian random field inputs. This approach yields substantial improvements in the state
of the art for these problems. Importantly, our framework unifies log-normal and affine in-
put models. In the affine case, we obtain convergence rates that improve known results by a
logarithmic factor.
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1 Introduction and main results

In Computational Uncertainty Quantification, the problem of efficient approximation for paramet-
ric PDEs with random inputs is of great interest and significant progress was achieved in recent
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years. The number of works on this topic is too large to mention all of them. We refer the reader
to the works [4, 17, 28, 30, 39] for surveys and bibliography on various aspects on it.

The principal distinction among numerical methods for parametric PDEs is whether they are
non-intrusive or intrusive. Non-intrusive methods use an existing solver (exact or approximate) for
the PDE, enabling deployment even when the solver is treated as a black box. Intrusive methods,
by contrast, incorporate the explicit PDE formulation into the approximation process, demanding
complete knowledge of the parametric PDE model. For a detailed comment, see, e.g., [17, Section
1.6].

We are interested in the problem of linear semi-discrete non-intrusive approximation of solutions
u(y) to parametric PDEs and the corresponding convergence rate based on a finite number of
particular solvers u(y,), ..., u(y,,) for yi, ..., y,, from a domain U>, where U> usually is the infinite-
dimensional domain I*° or R*. We do not consider fully discrete (multilevel) approximations which
simultaneously treat an approximation discretization on both spatial and parametric domains. The
reader can consult [22, 28] for survey and bibliography in this direction. In the present paper we
focus on parametric elliptic PDEs with log-normal random diffusion coefficients and also consider
these equations with affine random diffusion coefficients. Related problems of adaptive nonlinear
semi-discrete approximation for parametric PDEs was investigated in [16, 17, 2, 14, 15|, and of
linear semi-discrete approximation in [5, 6, 21, 22, 23, 29, 35, 37, 38, 28, 41, 42].

Solutions u(y), y € U, to parametric PDEs can be considered as elements of a Bochner
space Lo(U, X;u), where X is a Hilbert space, and p is a probability measure on U*. The
problem, as previously formulated, is equivalent to solving a linear sampling recovery problem in
the specified space. We leverage recent breakthrough results for scalar-valued sampling recovery in
reproducing kernel Hilbert spaces (RKHS) [11, 27, 32, 33], and transfer them to the Hilbert-valued
approximation setting (see surveys and bibliography on related results in [26, 40]). This transferring
method is related to, but distinct from, the approach of “lifting” the least squares approximation
analysis from scalar-valued to Hilbert-valued settings studied in [2, 3, 5, 14, 20], where direct least
squares algorithms are employed for sampling recovery of Hilbert-valued functions. In contrast,
the present work reduces the Hilbert-valued sampling recovery problem to a scalar-valued one,
which is a crucial difference from the lifting framework described in the cited papers.

Before presenting the main result on sampling recovery in Bochner spaces, we need to comment
on the setup. Let (U, %, 1) be a probability measure space with U being a separable topological
space and let X be a complex separable Hilbert space. Denote by Lo(U, X;u) = Lo(U,Cs u) @ X
the Bochner space of strongly u-measurable mappings v from U to X, equipped with the norm

1/2
loll s = ( /U Hv(y)\&du(y)) .

Notice that because U and X are separable, so is Lo(U, X;pu). We fix (ps) ey, an orthonormal
basis of Ly(U, C; p). Then a function v € La(U, X; 1) can be represented by the expansion

o(y) =Y vepily) with o, = / o(y) Pa(@) duly) € X (1.1)
seN U

with convergence in Lo(U, X; ). Moreover, for every v € Lo(U, X; u) represented by the series
(1.1), Parseval’s identity holds
2 2
HU”LQ(U,X;;L) = Z [vs]X-

seN



Throughout the present paper, we fix (05),cy, a non-decreasing sequence of positive numbers
such that o~ ! := (ng)seN € l3(N). For given U and p, denote by Hy o the linear subspace in
Lo(U, X; ) of all v such that the norm

1/2
[ollsix,q = <Z(0s\|vs\x)2> < o0.

seN

In particular, the space Hc o is the linear subspace in Lo(U,C; u) equipped with its own inner
product

([ 9 He , = ZU (fs 95) La(U,Cy) (9> Ps) Lo (UCi10)
seN

and forms a reproducing kernel Hilbert space with the reproducing kernel

= Do tes()es(y)

seN

with eigenfunctions (s),cy and eigenvalues (o;!) . Moreover, K (w, y) satisfies the finite trace

assumption

seN

/K(w,x)du(x) < 00,
U

which is not only natural in sampling recovery but also crucial to the techniques we employ. We
refer readers, e.g., to [12, 36] for necessary background on RKHSs.

We study the approximate recovery of functions in the space Hx , from a finite set of their
samples. To ensure a coherent formulation of the problem, we begin with a preliminary observation.

From the separability of X it follows that there exists a set Uy C U satistying u(U \ Uy) = 0
such that

)= >0 %0(®)es(y), Va,y € U,
seN
and
= Y 07 sV He L 0s(Y), Vf € Ly(U,C;p), Vy € Up.
seN
This means that the pointwise evaluations f(y) are well-defined for every y belonging the full
measure subset Uy of U.

Let (¢r)peny be an orthonormal basis of X. If v € Hx o, then (v,¢)x € Hc,o for every k.
Consequently, the pointwise evaluations (v(y), %) x are well-defined for every y € Up. This implies
that the pointwise evaluations v(y) are also well-defined for every y € Uy.

Throughout this paper, in the context of sampling recovery, the inclusion v € Hx o means that
v is a representative of an element from Lo(U, X; i) that the pointwise evaluations v(y) for every
y € Uy are well-defined with Uy fixed.

Let us formulate the problem of sampling recovery for v € Hx  as follows: Given sample points
Yi,---, Y, € Up and functions hy, ..., h, € La(U,C; u), we consider the approximate recovery of v
from its values v(y,),...,v(y,) by the linear sampling algorithm S;X on U defined as

n

(Spv)(w) = > v(y)hi(y). (1.2)

=1
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For convenience, we assume that some of the sample points y, may coincide.
Denote

Bxo = {U €Hxg: HUHHx,a < 1}’

the unit ball in Hy .

Let 8 be the family of all linear sampling algorithms Si¥ in Lo (U, X; i) of the form (1.2) with
k < n. To study the optimality of linear sampling algorithms from S;X for the set B X,o and their
convergence rates we use the (linear) sampling n-width

Qn(BX,G'7L2(U7X; /.L)) = inf sSup ||U - S?i(UHLQ(U,X;u)'

Sr}fes'r)f UEBX,U

Let us describe the main contribution of the present paper.

We establish convergence rates for an extension of the least squares method with varying
sampling strategies with the following basic result. For the sampling algorithm S/ in Lo(U, X; 1)
defined by (1.2), we have

o= S0l = S0P |- 5]

b
ve X,o Ly (U7(C7/J‘)

and, hence,
Qn(BX,a'aIQ(U:X;M)) = Qn(BC,OWLZ(Uv(C;N))' (13)

This relation makes available bounds on the sampling widths in the classical Lebesgue space
Lo (U, C; ) applicable to a general Bochner space Lo(U, X; ).

From the equality (1.3) and an inequality between the sampling widths and Kolmogorov widths
proven in [27, Theorem 1] we derive the optimal convergence rate of g, (Bx, o, L2(U, X;p)) for
0 < ¢ < 2 in the sense that the relations

n_l/q < sup Qn(BX,ayLQ(UaAX;,U)) = n—l/q (1'4)

o: [lo7 g, my<1
hold. In particular, it holds

sup on(Bx .o, Lo(U®, X; 1)) =< n~ Y4 (1.5)

o [lo= e, my<1

for the Bochner space Lo(U™, X; p) with p, the infinite tensor-product standard Gaussian measure
on U® = R, or the infinite tensor-product Jacobi probability measure on U® = [*°. It is
worth mentioning that the underlying sampling algorithm performing the convergence rate in
(1.4) and (1.5) is an extension to Bochner spaces of a classical least squares approximation with
a non-constructive subsampling. Regarding the constructiveness of linear sampling algorithms,
similar extensions of a classical least squares approximation and of a least squares approximation
with a special constructive subsampling, give the error bounds n=/9(logn)/? and n=9(log n)'/2,
respectively. Thanks to this constructive subsampling, the cost of computation is significantly
reduced for a sufficiently large number of sample points (for details, see [11]).

We apply these approximation results in general Bochner spaces to the formulated linear ap-
proximation for parametric PDEs with affine or log-normal inputs as well as for infinite-dimensional



holomorphic functions, significantly improving existing convergence rates. Moreover, differing from
the previous papers mentioned above which usually considered the affine and log-normal cases of
random inputs separately, with this approach we treat both cases together by employing a unified
method.

The specific setting for the linear approximation problem for a wide class of parametric PDEs
with random inputs as well as for infinite-dimensional holomorphic functions goes as follows. Under
a certain condition the weak parametric solution u(y) to a parametric elliptic PDE equation with
log-normal (U = R*°) or affine (U* = I*°) random inputs, satisfies a weighted ¢3-summability
of the energy norms of the Hermite or Jacobi GPC expansion coefficients, respectively, in terms
of the inclusion u(y) € M By, with HO'_IH&I(]F) < N for some 0 < ¢ < 2, M, N > 0 and positive

sequences o, where V' := H& (D) is the energy space and D is the spatial domain (see Lemmata 3.1
and 3.2 below). This allows us to apply all the above results for abstract Bochner spaces to
parametric elliptic or parabolic PDEs. The most significant application is that, from (1.5), there
exists a linear sampling algorithm SY in Lo(U>, V; ) of the form (1.2) for X = V such that

Hu - SXUHLZ(UOO,V;[L) < CMNn_l/q7

where C' is a positive constant independent of M, N,n and u. For log-normal random inputs
(U = R*), the convergence rate of linear non-instructive approximation of the parametric so-
lution u(y) obtained via the sampling algorithm S is n~/9. This is an important improvement
compared to all previous works [6, 21, 22, 23, 28, 29, 35, 37, 38], etc., which are off by a factor n'/?
from this convergence rate. In particular, it is significantly better than the rates n=3(1/a=1/2) and
n~(1/4-1/2) which have been recently obtained in obtained in [29, Theorem 3.18] and [22, Corollary
5.3|, respectively. The same notable improvement of convergence rate holds true for linear poly-
nomial interpolation approximation of relevant infinite-dimensional holomorphic functions on R
(cf. [28]) and of parametric parabolic PDEs. In the case of affine random inputs (U = I*°), the
convergence rate n~ /7 is better than the best-known convergence rate (n/logn)~4 of (linear and
non-linear) non-instructive approximation (cf. [5, 14, 21, 41]). Notice also that the convergence
rate n~ /9 coincides with the optimal convergence rate of (linear and non-linear) intrusive spectral
and Galerkin approximation of solutions to parametric PDEs with random inputs (cf. [7, 8, 9, 22]).
We believe that, using the techniques developed in this paper, similar improvements could also be
achieved for the relevant linear approximation of infinite-dimensional holomorphic functions on I°°.
However, this is beyond the scope of current consideration. Last but not least, it is worth emphasiz-
ing that the proof methods for the main results are simple yet entirely novel. The approaches rely
on the connection between sampling recovery in abstract RKHSs and associated approximations
of solutions to parametric PDEs. The proof methods are then based on the weighted summability
properties of the generalized polynomial chaos expansion coefficients. Moreover, these methods
can be extended and generalized to other problems in Uncertainty Quantification for parametric
PDEs with random inputs such as fully discrete non-instructive approximation, among others.
The last problem has been recently considered in [25].

Note that in all convergence rates reported in this work, the sequence o is assumed known.
It determines the selected basis (s)sen and, consequently, the least squares sampling algorithm.
The case in which o is unknown has been treated in [5], wherein the problem is approached via
compressed-sensing techniques rather than the lifting method.

The rest of the paper is organized as follows. In Section 2, we investigate sampling recovery in



abstract Bochner spaces, in particular, with infinite-dimensional measure. Here, we present some
least squares methods and their extensions to Bochner spaces. In Section 3 and 4, we apply the
results of Section 2 to linear approximation for parametric elliptic PDE equation with affine or log-
normal random inputs, and for infinite-dimensional holomorphic functions on R, respectively. In
Section 5, we discuss constructiveness and alternative least squares methods which can be applied to
non-intrusive approximations for parametric PDEs and infinite-dimensional holomorphic functions.

Notations: As usual, N denotes the natural numbers, Z the integers, R the real numbers, C
the complex numbers, and Ny := {s € Z : s > 0}. We denote R* and I*° := [—1,1]* the sets
of all sequences y = (y;)jen with y; € R and y; € [—1,1], respectively, and C* the set of all
sequences z = (y;)jen with z; € C. Denote by F the set of all sequences of non-negative integers
s = (85)jen such that their support supp(s) := {j € N : s; > 0} is a finite set. If a = (a;);ec7s

is a set of positive numbers with any index set J, then we use the notation a=! := (aj_l)jej.

For s,8' € F and y € R, denote: s!:= [[;cys;hi y® = [Len yjj; (5) = [Tjen (ij) We use
letter C to denote general positive constants which may take different values, and Ca,b,.:. a positive
constant depending on a,b,... For the quantities A,(f,k) and B,(f,k) depending on n € N,
feW, kcZ we write Ap(f, k) < Bu(f,k), f € W, k € Z¢ (n € N is specially dropped), if
there exists some constant C' > 0 such that A,(f,k) < CB,(f, k) foralln € N, f ¢ W, k € Z¢
(the notation A,(f,k) 2 Bn(f, k) has the obvious opposite meaning), and A, (f, k) < B,(f, k) if

An(f, k) < Bu(f, k) and B, (f, k) < Au(f, k). Denote by |G| the cardinality of the set G.

2 Sampling recovery in Bochner spaces

In this section, we show that the problem of linear sampling recovery of functions in the space
Hx o for a general separable Hilbert space X can be reduced to the particular case of the RKHS
Hc . This allows, in particular, to extend linear least squares sampling algorithms in Hc o to
Hx o while preserving the accuracy of approximation. Hence, we are able to derive convergence
rates of various extended linear least squares sampling algorithms for functions in Bx , based on
some recent results on inequalities between sampling widths and Kolmogorov widths of the unit
ball B¢, which are realized by linear least squares sampling algorithms.

2.1 Extension of least squares approximation to Bochner spaces

Recall that, (¢s),cn is a fixed orthonormal basis of La(U, C; i) and for a function v € Lao(U, X; 1)
the expansion (1.1) holds, with coefficients (vs),cy defined as in (1.1). We will need the following
auxiliary result. Let AX be a general linear operator in Ly(U, X; i) defined for v € Lo(U, X; 1) by

AXy = Z (Z a;ﬁsvS) Ok, (2.1)

keN \seN

where (a,s)k,s)en2 is an infinite-dimensional matrix.
Lemma 2.1 Let AX be linear and bounded. There holds the equality
X _ C
HA HHX7O-*>L2(U7X;‘U,) - HA HHC’U*)LQ(U,(C;/L)‘
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Proof. For a function f € Hc ,, we have the series expansion

f=Y fsps with (o4|fs])sen € £2(N),

seN

and by the operator norm in the classical Lebesgue space
C £12 C||2 2
HA fHLQ(U,(C;M) S HA HHQUHLQ(U,(C;M)HfHH(C,a-'

Using the series expansion of f and the definition of A from (2.1), the last inequality is equivalent

to
Z Z ak,sfs

keN |seN

2

S HA(CH?;[C’G—)LQ(U,(C;M) Z Ug’f5‘2 . (22)
seN

Because this is independent of the choice of f, it holds for all sequences (o fs|)sen € £2(N).
For the Hilbert-valued case v € Hx 4, we have

v = ZUS(PS with (USHUS”X)SEN € £2<N)7
seN

and
2

X 12
1A%l wx = D
keN

Z a,sUs

seN

X
Let (1) oy be an orthonormal basis of X and

Vs = Z(US)jwj‘

JEN
Then,

A¥o=3Y" (Zzak,s(vs)j%)@k-

kEN  seN jeN

Since ((pkwj)kjeN is an orthonormal basis of Lo (U, X; 1), by applying (2.2) to fs = (vs);, we obtain

2

HAX/U”%Q(U,X;#) = ZZ Zak,s(vs)j

jEN keN |seN

HA(CHiIC,C,—)LQ(U,QM) Z Z U?’(”S)j‘Q

jEN seN

= |‘ACH§{C,G—>L2(U,(C;;A)ZJEH’USH?X: HACH?LIC’G%LQ(U,C;/L)HUH%{X,a'
seN

IN

This proves the inequality

14 bty s oy S 1A% e, ey



In order to prove the inverse inequality, let (f ("))n ey C He,o be a sequence such that | f @)l Heo =
1 and
C _ C
nh_{{)lo HA £ HLQ(U,(C;M) = HA HHC70—>L2(U,(C;M)'
Define v(™ := f("4);. Then Hv(”)HHXJ =1 and

2

=2

X keN

Z g s (F ™, 05) Ly

seN

Zakzs ™, 95) LU Cip)

seN

HAXU(n) HiQ(U,X;/L) - Z
keN

) 112
= HA(Cf( )HLQ(U,C;M) - HACHHCJ—>L2(U,(C;M)

as n — oQ.

This proves the inequality

14 b1y oy 2 1A Loy

a
The following theorem plays a key role in transferring current results on linear sampling re-
covery of functions in RKHSs [11, 27, 32, 33], into semi-discrete non-intrusive approximation for
parametric PDEs with random inputs, based on finite number of particular solvers.
Recall that Uy C U is a fixed set of full measure such that if v € Hx , the pointwise evaluations
v(y) are well-defined for every y € Uy.

Theorem 2.1 Given arbitrary sample points yy,...,y, € Uy and functions hi,..., hy, €
Ly(U,C; ), for the sampling algorithm SiX in Lo(U, X; 1) defined by (1.2), we have that

(2.3)

sup o= 50l = s (£ 5]

vEBx Lo(UCsp)

moreover,

Qn(BX,aa L2(U7 X; M)) = Qn(B(C,cn L2(U7 G M)) (24)

Proof. Denote by IX the identity operator in Lo(U, X;u). Let S:X be an arbitrary sampling
operator in Lo(U, X; u) given for v € Lo(U, X; u) by

v(y;)hi(y)

[
NE

=1

Applying Lemma 2.1 with A% := [ — SX we get

=7~ 3]

X X
HI - Sn HHX7C,—>L2(U,X,M Hc, ,—>L2(U<C,u)

Consequently, we obtain (2.3).
Since the correspondence between S;X and SC is one-to-one, we use (2.3) to show

_Sr)l(UHLQ(U,X;u): inf  sup Hf— (Cf‘

inf sup Hv sitse Sub

SYXeSY veBx o Lo(U,Cip)



which proves (2.4). 0

Let us construct an extension of a least squares approximation in the space Lo(U,C;u) to a
space Lo(U, X;p). For n,m € N with n > m, let yy,...,y, € Uy be points, wi,...,w, > 0 be
weights, and V;, = span{p;}"; the subspace spanned by the functions ¢;, j = 1,...,m. The
weighted least squares approximation

S’Sf = S;(z:(yla"wynawla"’7wnavm)f

of a function f: U — C is given by

St f=argmingey, Y wil f(y;) — gy (2.5)
i=1

The least squares approximation can be computed using the Moore-Penrose inverse, and it is
the approximation of smallest error for over-determined systems where no exact solution can be
expected. In particular, for L = [@s(y;)]i=1....n:s=1,...m and W = diag(wy, ...,wy) we have

Sef =Y gses with (§1,-.,Gm) = (WL W2 (f(y), ... f(wa) T, (26)
s=1

where (Wl/ 2L)T denotes the pseudo-inverse of W/2L. In the presented theorems the setting is
such that the matrix W'/2L has full rank and we have (W'Y2L)* = (L*WL)"'L*W'2.  For

every n € N, let

n
Sef =Y f(y)hi, (2.7)
=1
be the least squares sampling algorithm constructed as in (2.5)—(2.6) for these sample points
and weights, where hy,...,h, € Ly(U,C; ). Hence we immediately obtain the extension of this
least squares algorithm to the Bochner space Lo(U, X; ) by replacing f € Lo(U,C; ) with v €
LQ(U7X7H)

n
SXv = SX(yy,s .o Yy W, - ey Wiy Vi)V = Zv(yi)hi. (2.8)
i=1
As the least squares approximation is a linear operator, worst-case error bounds carry over from
the usual Lebesgue space Lo(U, C; u) to the Bochner space Lo(U, X; ).
Let n € N and E be a normed space and F' a central symmetric compact set in £. Then the
Kolmogorov n-width of F' is defined by

d (F.E):= inf inf ||f —
n(F, E) ﬂfcgggl&n"f 9l e,

where the left-most infimum is taken over all subspaces L,, of dimension at most n in FE.

We make use of the abbreviation d,, := dn(Bc,s, L2(U,C; p1)). In our setting, we know that
dn = Ur:—ll-l‘

From Theorem 2.1 we can derive the following lemma, which extends to Bochner spaces the
recent important result of [27, Theorem 1] on an inequality between sampling widths and Kol-
mogorov widths in RKHSs.



Lemma 2.2 For any n € N, there exist points y,...,y, € Uy and weights wy, ... ,wy, such that

- 2 43200
sup Hv — S,)fv’ < 433 max d%n/43200j7 — Z dg ,
vEBX,o L2 (U, X5p) " o> n/23200]
where . n
SX = SX (Y1, Yny Wi,y Wn, Vi) and nzmzm. (2.9)
Proof. For the particular case when X = C, this theorem is implied immediately from [27, Theo-
rem 23|. Hence, by using Theorem 2.1 we prove the lemma. a

2.2 Convergence rates
Lemma 2.3 Let [[o™ ']y, o) < 1 for some 0 < ¢ < 2. Then we have that
dn(Be.o, La(U,C; ) < (n+1)"Y7 ¥n e N, (2.10)
Proof. For £ > 0, we introduce the set
A¢) = {seN:ol<g)

For a function f € B¢ represented by the series (1.1), we define the truncation

Saef = D fps. (2.11)

sEA($)

Applying the Parseval’s identity, noting (2.11), we obtain

1f = Saoflwew = 3 162 = S (@lfi)0r?

o: o >E1/a o: os>E1/4
< Y (oslfs])? < g
seN

The function Sy () f belongs to the linear subspace L(§) := span{y; : s € A(§)} in Lao(U,C;p) of
dimension |A(§)|. We have

A < DY 1<) ot <

o os<El/a seN
as [[e s,y < 1. For a given n € N,

dn(Be,o, Lo(U,Cs 1)) < |If = Sae flliawep < €1

for arbitrary £ < n + 1 satisfying the inequality |[A(£)| < n. Hence, by taking the supremum over
all such £ we obtain (2.10). a
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Corollary 2.1 Let 0 < g <2 and |6~ ||s,qvy < 1. Then there exists a constant Cdepending on q
only such that, for any n € N, there exist points yq,...,y, € Uy and weights w1, ...,w, such that

Bx o, Lo(U, X; < su U—SXU‘ < Ccn Y,
on(Bx.a: Lo W) = UGBEC, "ol T
where SX is defined as in (2.9).
Moreover,
(n+1)71 < sup on(Bx,o, La(U, X)) =< n /1.

o: lo e, mn<t

Proof. The upper bound in this theorem is derived from Lemmas 2.2 and 2.3, the asymptotic

equivalence
1
— Y k24 =m™V9, meN,
m k>m

and from the fact that this bound is independent of the sequence o. To prove the lower bound,
one can take o = (0y)sen with o3 = (n + 1)1/‘7 for s <n+1, and o5 = 255/% for s > n + 1 with
arbitrary K € N. It is easy to check that H&_IHE ™) <1, where 6 := (1 + 2_K")_1/qo'. We then
have by Theorem 2.1 that !

on(Bx,e,L2(U,X; 1)) = on(Bes,L2(U,C;p)) > dn(Bcs, L2(U,C; p))
= Gt = (n+ 1) V1 27 Kmy=la,

Since K is arbitrary, we get

sup on(Bx .o, La(U, X; 1)) >n~1/4.

o [l e, m<1

|

Next, we apply Corollary 2.1 to Bochner spaces with infinite tensor-product probability mea-

sure, which appear in approximation of solutions to parametric PDEs with random inputs and of
holomorphic functions in Sections 3 and 4, respectively.

For given a,b > —1, let v, be the Jacobi probability measure on I := [—1, 1] with the density

o F'(la+b+2)
@0 9a b (g + I + 1)

5a,b(y) = Ca,b(1 - y)a(l + y)b7

Let (Ji)ken, be the sequence of Jacobi polynomials on I := [—1, 1] normalized with respect to the
Jacobi probability measure v, i.e.,

[V Pavants) = [ 1) Poasi)dy = 1.k € o
I I

Let v be the standard Gaussian probability measure on R with the density

1
9(y) == Ton

11
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Let (Hg)ken, be the sequence of Hermite polynomials on R normalized with respect to the measure
v, i.e.,

/\Hk(y)\zdv(y) =/ |Hie(y)]P9(y)dy = 1, k € No.
R R

Throughout this section, we use the joint notation: U denotes either T or R; U™ either I*® or

R,
{ya,b if U=T,
p= .
v if U=R;
Jk if U=TI,
Pk = .
H, ifU=R.

We next recall the concept of probability measure p(y) on U as the infinite tensor product of
the measures u(y;):
n(y) = Quy), y=(y)jen € U™,
JEN

(The sigma algebra for pu(y) is generated by the set of cylinders A := HjeN Aj, where A; C U
are univariate Lebesgue measurable sets and only a finite number of A; are different from U. For
such a set A, we have p(A4) = [[;cn 1(4;))-

Let X be a separable Hilbert space. Then a function v € La(U, X; ) can be represented by

the generalized polynomial chaos (GPC) expansion

U:sz¢s, vg € X, (2.12)

sclF
with
00(0) = @n, (), vei= [ o(u)0u(w) duly), s F.
jEN =

Here F is the set of all sequences of non-negative integers s = (s;)jen such that their support
supp(s) := {j € N:s; > 0} is a finite set.

For a set o = (0g)ser of positive numbers, denote by Bx ,(U*) the set of all functions
v € Lo(U™, X; u)) represented by the series (2.12) such that

1/2
(Z(asnvsHX)?) <1.

selF

Notice that if ||0'_1||gq(]F) < oo for some 0 < ¢ < 2, then for every v € By »(U*), the series
(2.12) converges absolutely and unconditionally in Ly(U*, X; u) to v (see [24, Lemma 3.1] for the
case U™ = R, the case U™ = [*° can be proven by the same arguments). Hence, we can reorder
the countable set I as F = (s;)jen so that the sequence o = (0s;)jen is non-decreasing. Put
U:=U>, oj:=o0s, pj:=¢s; and vj := vs;. Then Bx 5(U>) can be seen as the set By o,
defined as in Section 1, of all functions v € Lo(U, X; u)) represented by the series

v = Zngoj, v; € X,
jeN

12



such that
1/2
2
> (ojllvjlix) <1
JEN
In the next sections, due to this representation of Bx ,(U>), we are able to employ Corollary 2.1
in various applications.

3 Applications to parametric elliptic PDEs

3.1 Introductory remarks

For parametric PDEs, since the number of parametric variables may be very large or even infinite,
they are treated as high-dimensional or infinite-dimensional approximation problems. As a model
we consider parametric divergence-form elliptic PDEs with random inputs.

Let D C R? be a bounded Lipschitz domain. Consider the diffusion elliptic equation

—div(a(z)Vu(z)) = f(x), xe€ D, ulpp = 0, (3.1)

for a given fixed right-hand side f € H~!(D) and a spatially variable scalar diffusion coefficient a.
Denote by V := H}(D) the energy space. If a € Loo(D) satisfies the ellipticity assumption

0 < amin < a < amax < 00,

by the well-known Lax-Milgram lemma, there exists a weak unique solution u € V' to the equa-
tion (3.1), satisfying
a(x)Vu(z) - Vu(x)de = (f,v), YveV.
D

PDEs with parametric and stochastic inputs are a common model used in science and engi-
neering. Depending on the nature of the modeled object, the parameters involved in them may be
either deterministic or random. The random nature reflects the uncertainty in various parameters
presented in the physical phenomenon modeled by the equation. For equation (3.1), we consider
the diffusion coeflicients having a parametric form a = a(y), where y = (y;)jen is a sequence
of real-valued parameters ranging in the set U which is either R or I*°. Denote by u(y) the
solution to the parametric elliptic diffusion equation

—div(a(y)(@)Vu(y)(z)) = f(®), zcD, ycRY, u(y)lop = 0, y € U™, (3.2)

The resulting solution operator maps y € U™ to u(y) € V. The objective is to achieve a numerical
approximation of this complex map by a small number of parameters with a guaranteed error in
a given norm.

In this section, we consider both the log-normal case when U* = R*> and the diffusion coeffi-
cient a is of the form

a(y) = exp(b(y)), with b(y) =D i1, (3.3)
j=1

13



and y; are i.i.d. standard Gaussian random variables, and the affine case when U = I*® and the
diffusion coefficient a is of the form

aly) =a+ Yy, (3.4)
j=1

and y; are i.i.d. standard Jacobi random variables. Here a € Lo (D) and v; € Lo (D) for both
cases.

An approach to studying summability that takes into account the support properties of the com-
ponent functions 1, has been recently proposed in [9] for the affine parametric case, in [8] for the
log-normal parametric case, and in [7] for extensions of both cases to second-order Sobolev norms
of the corresponding GPC expansion coefficients. This approach leads to significant improvements
on the results on £,-summability and weighted f2-summability of GPC expansion coefficients, and
therefore, on best n-term semi-discrete and fully discrete approximations when the component
functions 1; have limited overlap, such as splines, finite elements or compactly supported wavelet
bases. In this section, we will employ the results of the previous section to obtain convergence
rates of sampling recovery of solutions to parametric elliptic PDEs with random inputs, which are
derived from results on weighted f2-summability in [7, 9].

3.2 Convergence rates

We first present some known weighted fso-summability results for solutions u of parametric elliptic
PDEs with random inputs.
For the log-normal case, we have the following result on weighted fo-summability.

Lemma 3.1 Let 0 < g < oo, n € N with n > 2/q, and p := (pj)jen be a sequence of positive
numbers such that p~* € £,(N), and for the log-normal parametric diffusion coefficient a(y) as in
(3.3),

> pjl] < oo. (3.5)
JEN Leo(D)
Then for the weak solution u to the parametric elliptic PDE (3.2) with the log-normal diffusion
coefficient as in (3.3), there exist positive constants M, N such that

1/2
<Z(O’S||us||v)2> <M < oo with HU_IH&Z(IF) < N < o0, (3.6)
selF

where with |8'|o := sup;ey s we define o := a(n, p) = (05(n, p))ser as

2 2 S 2s”;
o5 :=o0s(n,p)° = Z (s’) H p;’, s€F. (3.7)

8 |8'|co<n JjEN
Proof. A proof of this lemma is given in an implicit form in [8]. For completeness, let us present
a short proof. By [8, Theorems 3.3 and 4.2], there exists a constant M such that

2s’

Sl = > 2]

selF s’ 8|0

!

o uly)| arty) < (38)

14



This proves the first inequality in (3.6). Since p~! € £,(N), from [8, Lemma 5.1] the second
inequality in (3.6) is implied. g

For the affine case, we have the following result on weighted ¢2-summability.

Lemma 3.2 Let essinfa > 0. Let 0 < ¢ < 0o and (p;)jen be a sequence of positive numbers such
that (pjfl)jeN belongs to £4(N), and for the affine parametric diffusion coefficient a(y) as in (3.4),

"E:jeN/%Wﬂv

a

<1. (3.9)
L (D)

Then for the weak solution u to the parametric elliptic PDE (3.2) with the affine diffusion coefficient
as in (3.4), there exist positive constants M, N such that we have that

1/2
(Z(USHUSHV)Q) <M < oo with HU_IHZ,;(]F) < N < o0, (3.10)
selF

where o := o (p) = (0s(p))ser is defined by

a7b p—
and ¢y =1,

, keN.

b 2k+a+b+ 1)k (E+a+b+ 1D (a+ I+ 1)
ke I(k+a+1)I'(k+b+1)T(a+b+2)

Proof. A proof of this lemma is presented in an implicit form in [9] and [7]. The first inequality in
(3.10) follows from [9, Remark 5.3], the second one from [7, (63)]. a

Notice that assumptions (3.5) and (3.9) are different from the assumption (|Wj||Loo(D))jeN €
¢,,(N) considered in [13, 18, 19], or (j”ijLoo(D))jeN € ¢, (N) considered in [31] for some 0 < p < 1.
The latter do not take into account the support properties of the component functions v;, and
hence, lead to worse results when the overlaps of the supports of v; are finite. For a more detailed
discussion on the advantages of assumptions (3.5) and (3.9) over these ones, we refer the reader to
[9, 8, 22, 28].

We are now in a position to formulate the most significant result of our study. Let

Vm = Span{¢8j };n=l

be the subspace spanned by the (Hermite or Jacobi) polynomials ¢s,, j = 1,...,m. Let Ug® C U*
be a fixed set of full measure such that the pointwise evaluations u(y) are well-defined for every
y € Ug°. (Such a set exists due to Lemma 3.1 or Lemma 3.2.) By applying Corollary 2.1, from
Lemmata 3.1 and 3.2, and utilizing the homogeneous argument we obtain
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Theorem 3.1 Let the assumptions and notations of Lemma 3.1 or of Lemma 3.2 with 0 < q < 2
hold for the log-normal case (3.3) (U = R*>°) or for the affine case (3.4) (U = 1I*), respectively.
Let u be the weak solution to the parametric elliptic PDE (3.2) with the log-normal diffusion
coefficient as in (3.3) or the affine diffusion coefficient as in (3.4), respectively. Then for any
n € N, there exist points yq,...,y, € Us° and weights w1, ...,w, such that

< CMNn Y4

Hu _ ggu\
LQ(UOO7V7H)

with a constant C' independent of n, M, N and u, where 5,‘{ is defined as in (2.9) for X = V.

4 Applications to holomorphic functions

The sparsity analysis for parametric elliptic PDEs with log-normal diffusion coefficients, as in [7, 8],
hinges on real-variable bootstrapping to establish sparsity. This approach encounters technical ob-
stacles when extending to higher spatial regularity or more general parametric PDEs. By contrast,
complex-variable methods proposed in [28], using holomorphic extension of the solution offer an
alternative pathway to sparsity and regularity, often simplifying the treatment of smoothness and
broadening applicability. One advantage of establishing sparsity of Hermite GPC expansion co-
efficients via holomorphy rather than by successive differentiation is that it allows to derive, in a
unified way, weighted fo-summability bounds for the coefficients of Hermite GPC expansion whose
size is measured in Sobolev scales in the domain D.

Formally, in the log-normal case (3.3) of the parametric equation (3.2), replacing y = (y;)jen €
R*® in the coefficient a(y) in (3.3) by z = (2;)jen = (y;j + ;) jen € C*, the real part of a(z) is

Rla(z)] = exp (Z yﬂbj(w)) cos (Z&%(fﬂ)) :

jeN jeN
We find that Rla(z)] > 0 if

> &y

jeN

I
Lo(D) 2

This motivates the study of the analytic continuation of the solution map y — u(y) to z — u(z)
for complex parameters z = (2;)jen where each z; lies in the strip

Sj(p) :={z € C : [Jmz;| < p;} (4.1)
and where p; > 0 and p = (p;) en is any sequence of positive numbers such that

> pjli]

jeN

< T
5
Loo (D)

Let p = (pj)jen be a sequence of non-negative numbers and assume that J C supp(p) is finite.
Define for y € R>,

Si(y,p) = {(2)jen €EC® : z; € Sj(p) if j € J, and z; = y; if j & J}. (4.2)
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For the definition of Sobolev spaces H" := H"(D) and W := W[ (D) as well as that of a
C"™-domain see, e.g., [1]. The following result on holomorphy of the parametric solution has been
proven in [28, Proposition 3.21].

Lemma 4.1 Let r € N and D be a bounded domain with either C*®-boundary or convex C™ -
boundary. Let the sequence p = (p;)jen € [0,00)* satisfy

> pjlb]

jeN

<K<
Loo (D)

g . (4.3)

Let yo = (Y0.1,Y0,2, - - -) € R be such that b(y,) belongs to WIS, and let J C supp(p) be a finite
set. Then the weak parametric solution u of the variational form of (3.2) with log-lognornal random
inputs (3.3) is holomorphic on S;(yq, p) as a function of the parameters z; = (2;)jen € Sj(yg, P)
taking values in H" (D) with z; = yo; for j & J held fized.

Based on the holomorphy of the parametric solution as in Lemma 4.1, a weighted /¢o-
summability of the Sobolev H"-norm of the Hermite GPC expansion coefficients of the parametric
solution u has been established in [28, Theorem 3.25] as follows.

Lemma 4.2 Let € N, D be a bounded domain with either C*-boundary or conver C"1-
boundary, and f € H"™"Y(D). Assume that for every j € N, v; € WI L and there exists a
positive sequence (\;)jen such that (exp(—)\?))jeN € (1(N) and the series ) ;e Aj| D] con-
verges in Loo(D) for all o € N& with || <r —1. Let g = (0j)jen be a sequence of positive
numbers satisfying (Qj_l)jeN € 4(N) for some 0 < ¢ < co. Assume that, for each s € F, there
exists a sequence py = (psj)jen of non-negative numbers such that supp(s) C supp(p,),

sup Z

seF | <s—1

2s
> pagl D*y

jeN

|
<K< g, and Z 7O % (4.4)

p23
Loo(D) s’ [sloo<n T °

with n € N, n > 2/q. Let u be the weak solution to the parametric elliptic PDE (3.2) with the
log-normal diffusion coefficient as in (3.3). Then exist positive constants M, N such that

> (0s(n,@)llus|lmr)® < M < oo with |lo(n, )" ||, g <N < oo, (4.5)
selF

where o (1, 0) = (05(1, 0))ser is given by (3.7).
By applying Corollary 2.1, from Lemma 4.2, under the assumptions and notation of Lemma 4.2,
and utilizing the homogeneous argument we again obtain

Corollary 4.1 Let the assumptions and notation of Lemma 4.2 hold for some 0 < q < 2. Let u
be the weak solution to the parametric elliptic PDE (3.2) with the log-normal diffusion coefficient
as in (3.3). Then for any n € N, there exist points y,...,y, € U5° and weights wi,...,wy, such
that
Hu—gfru‘ < CMNn~/4 (4.6)
La(Re°,H" ;)

with a constant C' independent of n, M, N and u, where 5’#7 is defined as in (2.9) for X = H".
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The convergence rate in (4.6) of Corollary 4.1 is an entirely new result for semi-discrete non-
intrusive approximation of the parametric solution u(y), which significantly improved by a factor
n~1/2 the previous result which is implied from [28, Thoerem 6.13] for X = H".

The results of Lemmata 4.1 and 4.2 encourage us to investigate the holomorphy and weighted
lo-summability as a sequence for a wider class of functions on R* and application to approxima-
tion for parametric PDEs with log-normal random inputs. We recall the concept of “(b, &, e, X)-
holomorphic functions” on R* which has been introduced in [28, Definition 4.1] for general para-
metric PDEs with random input data. For m € N and a positive sequence g = (gj);”:l, we
put

S(o) :={z € C™ : |Jmz,;| < p; Vj} and B(o) :={z € C™ : |zj| < p; Vj}.

Let X be a complex separable Hilbert space, b = (b;)jen a positive sequence, and £ > 0, € > 0.
For m € N we say that a positive sequence o = (gj)gnzl is (b, &)-admissible if

ijQj <¢.
j=1

A function v € Ly(R*>, X;) is called (b, &, e, X)-holomorphic if

(i) for every m € N there exists v, : R™ — X, which, for every (b,{)-admissible g, admits a
holomorphic extension (denoted again by vy,) from S(g) — X; furthermore, for all m < m/

VY1, -y Ym) = U (Y1, - -+ s Ym, 0, ..., 0) V(y;)je, € R™,
(i) for every m € N there exists ¢y, : R™ — Ry such that |||, gm.) < € and

sup sup [lom(y +2)llx <em(y)  Vy eR™,
g is (b,&)-adm. z€B(g)

(iii) with ¥, : R* — X defined by 0y, (y) := vm (Y1, - - ., Ym) for y € R* it holds

W}gmw v — 17mHL2(Ro<>,X;7) =0.

We notice some important examples of (b, &, e, X)-holomorphic functions on R* which are
solutions to parametric PDEs equations with log-normal random inputs and which were studied
n [28]. Let b(y) be defined as in (3.3) and V a holomorphic map from an open set in Lo (D) to
X. Then function compositions of the type

v(y) = V(exp(b(y)))

are (b,&,e, X)-holomorphic under certain conditions [28, Proposition 4.11]. This allows us to
apply weighted ¢o-summability for approximation of solutions v(y) = V(exp(b(y))) as (b, &, e, X)-
holomorphic functions on various function spaces X, to a wide range of parametric and stochastic
PDEs with log-normal inputs. Such function spaces X are high-order regularity spaces H*(D) [28,
Section 4.3.1] and corner-weighted Sobolev (Kondrat’ev) spaces K& (D) (s > 1) for the parametric
elliptic PDEs (3.1) with log-normal inputs (3.3) [28, Section 7.6.1]; spaces of solutions to linear
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parabolic PDEs with log-normal inputs (3.3) [28, Section 4.3.2]; spaces of solutions to linear elastics
equations with log-normal modulus of elasticity [28, Section 4.3.3]; spaces of solutions to Maxwell
equations with log-normal permittivity [28, Section 4.3.4]; spaces of posterior densities and of their
linear functionals in Bayesian inverse problems [28, Section 5], etc..

The following key result on weighted fs-summability of (b, &, e, X)-holomorphic functions has
been proven in [28, Theorem 4.9].

Lemma 4.3 Let v be (b,§, e, X)-holomorphic for some b € ,(N) with 0 < p < 1. Let n € N and
let the sequence p = (pj)jen be defined by

P = bi-)il%.
AV [1bll 4, )

Then we have

1/2
(Z(USHUSHX)2> <M <oo, with |le7, g <N <oo,
selF

where q :=p/(1 —p), o :=oa(n,p) = (0s(n, p))ser is given by (3.7), M = eCy and N = Cy ¢ with
some positive constants Cyp and Cp .

Let RF® C R* be a fixed set of full Gaussian measure such that the pointwise evaluations u(y)
are well-defined for every y € RS°. (Such a set exists due to Lemma 4.3.) By applying Corollary
2.1, from Lemma 4.3, and utilizing the homogeneous argument we obtain

Theorem 4.1 Let v be (b, &, e, X)-holomorphic for some b € £,(N) with 0 < p < 2/3. Then for
any n > 2, there exist points yy,...,y, € R§° and weights wy, ... ,wy, such that
Hv—gffv‘ < CMNn~(/P=1) (4.7)
LQ(ROO’X?'Y)

with a constant C independent of of n and v, where M, N are as in Lemma 4.3 and gﬁ( is defined
as in (2.9).

The convergence rate in Theorem 4.1 notably improves the result [28, Theorem 6.13] by a
factor n=1/2,

We present two examples of application of Theorem 4.1 to parametric PDEs with random
inputs.

Let us revisit the parametric equation (3.2) with log-normal random inputs (3.3). Hence, if
(tj)jen C Loo(D) such that b € ¢1(N) with b; := [|);]|_p), then the parametric weak solution
u(y) uniquely exists and is (b, &, ¢, V)-holomorphic by [28, Theorem 4.11]. For details, see [28,
Section 4.3.1].

Assume in addition, that b is a sequence such that b € £,(N) for some 0 < p < 2/3. Then the
parametric solution u(y) can be approximated by the extended least squares sampling algorithm
SY defined as in Theorem 4.1 for X = V, for which it holds the convergence rate (4.7).

We apply Theorem 4.1 to solutions to parametric linear parabolic PDEs with log-normal ran-
dom inputs. To establish this, let us present the holomorphic properties of solutions of these
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equations. For details, see [28, Section 4.3.2]. Let 0 < T' < oo denote a finite time-horizon and let
D be a bounded domain with Lipschitz boundary 9D in R?. We define I := (0,T) and consider
the initial boundary value problem for the linear parabolic PDE

% - div(a(w)vu(t, ~'P)) = f(t,x), (t,z) eI x D,
ulopxr =0, (4.8)

u|t:0 = uo(m)
We denote V := H}(D;C) and V' := H-1(D;C). Let
X = Ly(I,V)NH' I, V") = (Lo(D) @ V)N (H'(I) @ V') (4.9)

equipped with the sum norm

1/2
ullx o= (Nl + lalnn) o we X, (4.10)

where
T /I lu(t, I3 dt.
and

a1y = [ Nowate, )[R .

To state a space-time variational formulation and to specify the data space for (4.8), we introduce
the test-function space

Y = Ly(I,V) x Ly(D) = (La(I) ® V) x La(D)
which we endow with the norm
1/2
loly = (N1l + l2l3y)) 5 v = (o1,02) €Y.

Given a time-independent diffusion coefficient a € Loo(D;C) and (f,up) € Y’, the continuous
sesqui-linear and anti-linear forms corresponding to the parabolic problem (4.8) reads for u € X
and v = (vi,v2) €Y as

B(u,v) ::/I/l)ﬁtumdmdt+/l/l)aVu-demdt+/Duovgdaz

and
L(v) := /I<f(t, -),vl(t,-)>dt—|—/Du0112daz,

where (-, -) is the anti-duality pairing between V'’ and V. Then the space-time variational (weak)
formulation of equation (4.8) is: Find a weak solution v € X such that

B(u,v) = L(v), YveY. (4.11)
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Assume that (f,ug) € Y’ and that

0 < p(a) :=ess ill)lf R(a(z)) < la(z)| < llallz.(p) < o0, xeD. (4.12)
xre
Then there exists a unique solution u to the equation (4.11).
Consider the initial boundary value problem for the parametric linear parabolic PDE

W) _ giv(a(y)(@)Vu(y)(t,®) = f(t,2), (Lx)elx D, yeR™,
w(y)(x)|opxs =0, y e R, (4.13)
u(y)(x)|i=0 = uo(x), yeR™>,

with log-normal inputs (3.3). Hence, if (¢j)jen C D such that b € £1(N) with b; := |[o;ll,_ py,
then the parametric weak solution u(y) uniquely exists and and (b, &, e, X )-holomorphic by [28,
Theorem 4.11].

Assume in addition, that b is a sequence such that b € £,(N) for some 0 < p < 2/3. Then the
parametric weak solution u(y) to the equation (4.13) can be approximated by the extended least
squares sampling algorithm S;X defined in Theorem 4.1 for the space X as in (4.9) and (4.10), for
which holds the convergence rate (4.7).

5 Constructiveness and alternative least squares methods

In this section, we present several different sampling schemes to use with the least squares al-
gorithms for functions in the RKHS Hc ., and inequalities between sampling n-widths and Kol-
mogorov n-widths of the unit ball Bc,. We explain then how to apply these inequalities to
obtain corresponding convergence rates of linear sampling recovery in abstract Bochner spaces
and of approximation of the parametric solution u(y) to parametric elliptic or parabolic PDEs
with log-normal inputs as well as of infinite-dimensional holomorphic functions.

The choice of points y4,...,vy,,, weights w1, ...,wy,, and approximation space V,, is crucial for
the error of the least squares approximation. A lot of work has been done in the usual Lebesgue
space Lo(U, C; ) of which we present two more choices with a trade-off between constructiveness
and tightness of the bound and transfer them to the Bochner space La(U, X; p).

For m € N, let the probability measure v = v(m) introduced in [33], be defined by

0 071 s 2
Zs:m+1’ s P (yﬂ )d,u(y)

11 &

dv(y) := o(y)du(y) :== 5 ( los(y)* + = - (5.1)
2 m ; Zs:erl Os 2

Assumption 5.1 Let m > 3.

(i) Let n = [40mlogm]. Let further y,,...y, € Uy be points drawn i.i.d. with respect to v and
wi = (o(y;)) "

(ii) Let m := n and [40nlogn]| points be drawn i.i.d. with respect to v and subsampled using
[11, Algorithm 3] to n = [bm/| points for some b > 1+ 1/m. Denote the resulting points by

Y1, Y, € Up and w; = W(Q(yi))_l-
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Note that (i) and (ii) in Assumption 5.1 have been considered in [33] and [11].
Recall that we use the abbreviation d,, := d,,(Bc,¢, L2(U, C; p)).

Lemma 5.1 Let Sé( = S’ff(yl,...,yn,wl,...,wn,Vm) be the extended least squares algorithm
defined as in (2.8). Then we have the following.

(i) The points from Assumption 5.1(1) fulfill with probability exceeding 1 — (160logn)/n

logn
sup Hv = 530 Ly gy < 19max {dtn/@mogn)w - > dﬁ}
vEBX s>|n/(40logn)]

(ii) The points from Assumption 5.1(ii) fulfill with probability exceeding 1 — 8b/n

b+ 1\3/2 logn
Sllglp H S /UHLQ(UXHLL) 552(b_ 1) max{\/logn d[n/(2b)]a n Z d%}
veBx.o s>[n/(2b)]

(iii) There exist points yy,...,Y, € Uy and weights w; > 0 such that

1
sup Hv - ST)L(U”LQ(U,X;y) < 4325 max {dLn/43200j7 - Z dg}
vEBXx o s>[n/43200]

Proof. by Theorem 2.1, it suffices to show the inequalities X = C. To prove (i) we use [10,
Theorem 7.7] with t = logm. An intermediate step in the proof states with probability exceeding
1 —4exp(—t)

168 logn logn
sup Hv—S,i(vHLQ(U’XW) < [3d2, + — Z a2 < 19max{dm, - Z d%}
vEBx & s>m+1 s>m—+1

From the assumption on n we have n/(40logn) < m, which yields the first assertion and the
desired probability 1 — exp(—t) =1 —4/m > 1 — (160logn)/n.

To prove (ii) we use [10, Theorem 7.8] with ¢ = logm. An intermediate step in the proof states
with probability exceeding 1 —4exp(—t) =1—4/m <1—8b/n

10858 (b + 1)2 168 log[40m 1
(b+1) logm (202, + os[d0mlogm] g~ 4

—gX s
UGSEE,E, lo = S0l i < 3 (b—1)3 [40mlogm] 4=

With m > 3 we have

168 log[40m log m | < 168log(41mlogm) < 21
[40m logm ]| - 40m logm ~m
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Thus

10858 (b + 1)2 21
e
sup |[v—S;v < 7710gm<2d3n+— dg)
veBx.o H HLQ(U,X#,L) 3 (b _ 1)3 m SZ;H
b+ 1\3 9 1 )
< 304304<b — 1) log n max {dtn/(%)J’ - Z ds)}
s>[n/(2b)]
Part (iii) of the assertion is given in [27, Theorem 23] (see Lemma 2.2). a

Regarding the constructiveness of the linear sampling algorithms in Lemma 5.1, the bound
Lemma 5.1(i) is the most coarse bound, but the points construction requires only a random draw,
which is computationally inexpensive. The sharper bound in Lemma 5.1(ii) uses an additional
constructive subsampling step. This was implemented and numerically tested in [11] for up to
1000 basis functions. For larger problem sizes the current algorithm is too slow as its runtime is
cubic in the number of basis functions. The sharpest bound in Lemma 5.1(iii) is a pure existence
result. So, the only way to obtain this point set is to brute-force every combination, which is
computational infeasible.

Similarly to the proof of Corollary 2.1, one can prove the following results on convergence rates
of the extended least squares sampling algorithms described in Lemma 5.1.

Corollary 5.1 Let 0 < g < 2 and Ha*1||gq(N) < 1. Let S = SX(y1, s Up, Wiy - - > Wh, Vi) be
the extended least squares algorithm defined as in (2.8). There are universal constants ¢y, ca,c3 € N
such that for all n > 2 we have the following.

(i) The points from Assumption 5.1(1) fulfill with high probability

sup |lv — < n~Y4(logn)"/9;

S ’UH
cin Lo(U,X:1
vEBXJ 2( - )

(ii) The points from Assumption 5.1(i1) fulfill with high probability

sup ||v — < n Yi(1ogn)/2.

S ’UH
ca2n [ UX:
cB , 2( ) uu‘)

(iii) There exist points y,...,Y, € Uy and weights w; > 0 such that

< n_l/q.

sup H“—Sc)ganLg(U,X;u) ~

’UEBX,G

One can apply the last corollary to parametric PDEs with random inputs and infinite-
dimensional holomorphic functions to receive counterparts of all the results in Sections 3 and 4 on
extended least squares sampling recovery, based on the sample points from Assumption 5.1(i)—(iii).
In particular, by applying Corollary 5.1, from Lemmata 3.1 and 3.2 we obtain

Corollary 5.2 Let SV := SY(yy,...,Y,,wWi,...,wn, Vin) be the extended least squares algorithm
defined as in (2.8) for X = V. Under the assumption of Theorem 3.1, there are universal constants
c1,c2,c3 € N such that for all n > 2 we have the following.
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(i) The points from Assumption 5.1(1) fulfill with high probability

[Ju — chm < CMNn~Y4(logn)"/4;

UHLQ(UOO,V;M)
(ii) The points from Assumption 5.1(i1) fulfill with high probability

Hu—Ségn < CMNn~Y1(logn)'/?;

UHLQ(UOO,V;H)

(iii) There exist points yy,...,y, € Uy and weights w; > 0 such that

|u—S¥. < CMNn~'/1;

“HL2 (U, V)

The constants C in the above inequalities are independent of of M, N,n and u.

In the affine case (3.4), the convergence rate (n/logn)~1/7 (with 1/¢ := 1/p —1/2) in terms of
the number n of sampling points has been received in [14] for an adaptive least squares approx-
imation “lifting” to Hilbert-valued functions, based on an {,-summability of the Legendre GPC
expansion coefficients of the parametric solution, and on an adaptive choice of sequence of finite
dimensional approximation spaces, which is different from the linear extended least squares ap-
proximation in Corollary 5.2(i). Notice also that the result in Corollary 5.2(i) for the affine case
could be also proven by a linear modification of the technique used in [14], based on the weighted
fo-summability (3.10). The convergence rate (n/logn)~/4 (with 1/q := 1/p — 1/2) of sampling
recovery of (b, €)-holomorphic functions on I has been proven in [5] based on least squares pro-
cedure of [34] “lifting” to Hilbert-valued functions, where & > 0, b = (b;) ;. € {p(N) is a positive
sequence and 0 < p < 1.
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