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Abstract

We prove convergence rates of linear sampling recovery of functions in abstract Bochner
spaces satisfying weighted summability of their generalized polynomial chaos expansion coef-
ficients. The underlying algorithm is a function-valued extension of the least squares method
widely used and thoroughly studied in scalar-valued function recovery. We apply our theory
to two core problems in Computational Uncertainty Quantification. First, we address non-
intrusive approximations of solutions to parametric elliptic or parabolic PDEs with log-normal
inputs, using a finite set of particular solvers. Second, we consider approximating infinite-
dimensional holomorphic functions that arise as solutions to more general parametric PDEs
with Gaussian random field inputs. This approach yields substantial improvements in the state
of the art for these problems. Importantly, our framework unifies log-normal and affine in-
put models. In the affine case, we obtain convergence rates that improve known results by a
logarithmic factor.
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1 Introduction and main results

In Computational Uncertainty Quantification, the problem of efficient approximation for paramet-
ric PDEs with random inputs is of great interest and significant progress was achieved in recent
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years. The number of works on this topic is too large to mention all of them. We refer the reader
to the works [4, 17, 28, 30, 39] for surveys and bibliography on various aspects on it.

The principal distinction among numerical methods for parametric PDEs is whether they are
non-intrusive or intrusive. Non-intrusive methods use an existing solver (exact or approximate) for
the PDE, enabling deployment even when the solver is treated as a black box. Intrusive methods,
by contrast, incorporate the explicit PDE formulation into the approximation process, demanding
complete knowledge of the parametric PDE model. For a detailed comment, see, e.g., [17, Section
1.6].

We are interested in the problem of linear semi-discrete non-intrusive approximation of solutions
u(y) to parametric PDEs and the corresponding convergence rate based on a finite number of
particular solvers u(y1), ..., u(yn) for y1, ...,yn from a domain U∞, where U∞ usually is the infinite-
dimensional domain I∞ or R∞. We do not consider fully discrete (multilevel) approximations which
simultaneously treat an approximation discretization on both spatial and parametric domains. The
reader can consult [22, 28] for survey and bibliography in this direction. In the present paper we
focus on parametric elliptic PDEs with log-normal random diffusion coefficients and also consider
these equations with affine random diffusion coefficients. Related problems of adaptive nonlinear
semi-discrete approximation for parametric PDEs was investigated in [16, 17, 2, 14, 15], and of
linear semi-discrete approximation in [5, 6, 21, 22, 23, 29, 35, 37, 38, 28, 41, 42].

Solutions u(y), y ∈ U∞, to parametric PDEs can be considered as elements of a Bochner
space L2(U∞, X;µ), where X is a Hilbert space, and µ is a probability measure on U∞. The
problem, as previously formulated, is equivalent to solving a linear sampling recovery problem in
the specified space. We leverage recent breakthrough results for scalar-valued sampling recovery in
reproducing kernel Hilbert spaces (RKHS) [11, 27, 32, 33], and transfer them to the Hilbert-valued
approximation setting (see surveys and bibliography on related results in [26, 40]). This transferring
method is related to, but distinct from, the approach of “lifting” the least squares approximation
analysis from scalar-valued to Hilbert-valued settings studied in [2, 3, 5, 14, 20], where direct least
squares algorithms are employed for sampling recovery of Hilbert-valued functions. In contrast,
the present work reduces the Hilbert-valued sampling recovery problem to a scalar-valued one,
which is a crucial difference from the lifting framework described in the cited papers.

Before presenting the main result on sampling recovery in Bochner spaces, we need to comment
on the setup. Let (U,Σ, µ) be a probability measure space with U being a separable topological
space and let X be a complex separable Hilbert space. Denote by L2(U,X;µ) = L2(U,C;µ)⊗X
the Bochner space of strongly µ-measurable mappings v from U to X, equipped with the norm

∥v∥L2(U,X;µ) :=

(∫
U
∥v(y)∥2X dµ(y)

)1/2

.

Notice that because U and X are separable, so is L2(U,X;µ). We fix (φs)s∈N, an orthonormal
basis of L2(U,C;µ). Then a function v ∈ L2(U,X;µ) can be represented by the expansion

v(y) =
∑
s∈N

vs φs(y) with vs :=

∫
U
v(y)φs(y) dµ(y) ∈ X (1.1)

with convergence in L2(U,X;µ). Moreover, for every v ∈ L2(U,X;µ) represented by the series
(1.1), Parseval’s identity holds

∥v∥2L2(U,X;µ) =
∑
s∈N

∥vs∥2X .
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Throughout the present paper, we fix (σs)s∈N, a non-decreasing sequence of positive numbers
such that σ−1 :=

(
σ−1
s

)
s∈N ∈ ℓ2(N). For given U and µ, denote by HX,σ the linear subspace in

L2(U,X;µ) of all v such that the norm

∥v∥HX,σ
:=

(∑
s∈N

(σs∥vs∥X)2
)1/2

<∞.

In particular, the space HC,σ is the linear subspace in L2(U,C;µ) equipped with its own inner
product

⟨f, g⟩HC,σ :=
∑
s∈N

σ2s⟨f, φs⟩L2(U,C;µ)⟨g, φs⟩L2(U,C;µ)

and forms a reproducing kernel Hilbert space with the reproducing kernel

K(·,y) :=
∑
s∈N

σ−2
s φs(·)φs(y)

with eigenfunctions (φs)s∈N and eigenvalues
(
σ−1
s

)
s∈N. Moreover, K(x,y) satisfies the finite trace

assumption ∫
U
K(x,x)dµ(x) < ∞,

which is not only natural in sampling recovery but also crucial to the techniques we employ. We
refer readers, e.g., to [12, 36] for necessary background on RKHSs.

We study the approximate recovery of functions in the space HX,σ from a finite set of their
samples. To ensure a coherent formulation of the problem, we begin with a preliminary observation.

From the separability of X it follows that there exists a set U0 ⊂ U satisfying µ(U \ U0) = 0
such that

K(x,y) :=
∑
s∈N

σ−2
s φs(x)φs(y), ∀x,y ∈ U0,

and
f(y) =

∑
s∈N

σ−2
s ⟨f, φs⟩HC,σφs(y), ∀f ∈ L2(U,C;µ), ∀y ∈ U0.

This means that the pointwise evaluations f(y) are well-defined for every y belonging the full
measure subset U0 of U .

Let (φk)k∈N be an orthonormal basis of X. If v ∈ HX,σ, then ⟨v, ψk⟩X ∈ HC,σ for every k.
Consequently, the pointwise evaluations ⟨v(y), ψk⟩X are well-defined for every y ∈ U0. This implies
that the pointwise evaluations v(y) are also well-defined for every y ∈ U0.

Throughout this paper, in the context of sampling recovery, the inclusion v ∈ HX,σ means that
v is a representative of an element from L2(U,X;µ) that the pointwise evaluations v(y) for every
y ∈ U0 are well-defined with U0 fixed.

Let us formulate the problem of sampling recovery for v ∈ HX,σ as follows: Given sample points
y1, . . . ,yn ∈ U0 and functions h1, . . . , hn ∈ L2(U,C;µ), we consider the approximate recovery of v
from its values v(y1), . . . , v(yn) by the linear sampling algorithm SX

n on U defined as

(SX
n v)(y) :=

n∑
i=1

v(yi)hi(y). (1.2)
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For convenience, we assume that some of the sample points yi may coincide.
Denote

BX,σ :=
{
v ∈ HX,σ : ∥v∥HX,σ

≤ 1
}
,

the unit ball in HX,σ.
Let SX

n be the family of all linear sampling algorithms SX
k in L2(U,X;µ) of the form (1.2) with

k ≤ n. To study the optimality of linear sampling algorithms from SX
n for the set BX,σ and their

convergence rates we use the (linear) sampling n-width

ϱn(BX,σ, L2(U,X;µ)) := inf
SX
n ∈SX

n

sup
v∈BX,σ

∥v − SX
n v∥L2(U,X;µ).

Let us describe the main contribution of the present paper.
We establish convergence rates for an extension of the least squares method with varying

sampling strategies with the following basic result. For the sampling algorithm SX
n in L2(U,X;µ)

defined by (1.2), we have

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

= sup
f∈BC,σ

∥∥∥f − SC
n f
∥∥∥
L2(U,C;µ)

,

and, hence,
ϱn(BX,σ, L2(U,X;µ)) = ϱn(BC,σ, L2(U,C;µ)). (1.3)

This relation makes available bounds on the sampling widths in the classical Lebesgue space
L2(U,C;µ) applicable to a general Bochner space L2(U,X;µ).

From the equality (1.3) and an inequality between the sampling widths and Kolmogorov widths
proven in [27, Theorem 1] we derive the optimal convergence rate of ϱn(BX,σ, L2(U,X;µ)) for
0 < q < 2 in the sense that the relations

n−1/q ≤ sup
σ: ∥σ−1∥ℓq(N)≤1

ϱn(BX,σ, L2(U,X;µ)) ≍ n−1/q (1.4)

hold. In particular, it holds

sup
σ: ∥σ−1∥ℓq(N)≤1

ϱn(BX,σ, L2(U∞, X;µ)) ≍ n−1/q (1.5)

for the Bochner space L2(U∞, X;µ) with µ, the infinite tensor-product standard Gaussian measure
on U∞ = R∞, or the infinite tensor-product Jacobi probability measure on U∞ = I∞. It is
worth mentioning that the underlying sampling algorithm performing the convergence rate in
(1.4) and (1.5) is an extension to Bochner spaces of a classical least squares approximation with
a non-constructive subsampling. Regarding the constructiveness of linear sampling algorithms,
similar extensions of a classical least squares approximation and of a least squares approximation
with a special constructive subsampling, give the error bounds n−1/q(log n)1/q and n−1/q(log n)1/2,
respectively. Thanks to this constructive subsampling, the cost of computation is significantly
reduced for a sufficiently large number of sample points (for details, see [11]).

We apply these approximation results in general Bochner spaces to the formulated linear ap-
proximation for parametric PDEs with affine or log-normal inputs as well as for infinite-dimensional
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holomorphic functions, significantly improving existing convergence rates. Moreover, differing from
the previous papers mentioned above which usually considered the affine and log-normal cases of
random inputs separately, with this approach we treat both cases together by employing a unified
method.

The specific setting for the linear approximation problem for a wide class of parametric PDEs
with random inputs as well as for infinite-dimensional holomorphic functions goes as follows. Under
a certain condition the weak parametric solution u(y) to a parametric elliptic PDE equation with
log-normal (U∞ = R∞) or affine (U∞ = I∞) random inputs, satisfies a weighted ℓ2-summability
of the energy norms of the Hermite or Jacobi GPC expansion coefficients, respectively, in terms
of the inclusion u(y) ∈ MBV,σ with

∥∥σ−1
∥∥
ℓq(F) ≤ N for some 0 < q < 2, M,N > 0 and positive

sequences σ, where V := H1
0 (D) is the energy space and D is the spatial domain (see Lemmata 3.1

and 3.2 below). This allows us to apply all the above results for abstract Bochner spaces to
parametric elliptic or parabolic PDEs. The most significant application is that, from (1.5), there
exists a linear sampling algorithm SV

n in L2(U∞, V ;µ) of the form (1.2) for X = V such that

∥u− SV
n u∥L2(U∞,V ;µ) ≤ CMNn−1/q,

where C is a positive constant independent of M,N, n and u. For log-normal random inputs
(U∞ = R∞), the convergence rate of linear non-instructive approximation of the parametric so-
lution u(y) obtained via the sampling algorithm SV

n is n−1/q. This is an important improvement
compared to all previous works [6, 21, 22, 23, 28, 29, 35, 37, 38], etc., which are off by a factor n1/2

from this convergence rate. In particular, it is significantly better than the rates n−
1
2
(1/q−1/2) and

n−(1/q−1/2) which have been recently obtained in obtained in [29, Theorem 3.18] and [22, Corollary
5.3], respectively. The same notable improvement of convergence rate holds true for linear poly-
nomial interpolation approximation of relevant infinite-dimensional holomorphic functions on R∞

(cf. [28]) and of parametric parabolic PDEs. In the case of affine random inputs (U∞ = I∞), the
convergence rate n−1/q is better than the best-known convergence rate (n/ logn)−1/q of (linear and
non-linear) non-instructive approximation (cf. [5, 14, 21, 41]). Notice also that the convergence
rate n−1/q coincides with the optimal convergence rate of (linear and non-linear) intrusive spectral
and Galerkin approximation of solutions to parametric PDEs with random inputs (cf. [7, 8, 9, 22]).
We believe that, using the techniques developed in this paper, similar improvements could also be
achieved for the relevant linear approximation of infinite-dimensional holomorphic functions on I∞.
However, this is beyond the scope of current consideration. Last but not least, it is worth emphasiz-
ing that the proof methods for the main results are simple yet entirely novel. The approaches rely
on the connection between sampling recovery in abstract RKHSs and associated approximations
of solutions to parametric PDEs. The proof methods are then based on the weighted summability
properties of the generalized polynomial chaos expansion coefficients. Moreover, these methods
can be extended and generalized to other problems in Uncertainty Quantification for parametric
PDEs with random inputs such as fully discrete non-instructive approximation, among others.
The last problem has been recently considered in [25].

Note that in all convergence rates reported in this work, the sequence σ is assumed known.
It determines the selected basis (φs)s∈N and, consequently, the least squares sampling algorithm.
The case in which σ is unknown has been treated in [5], wherein the problem is approached via
compressed-sensing techniques rather than the lifting method.

The rest of the paper is organized as follows. In Section 2, we investigate sampling recovery in
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abstract Bochner spaces, in particular, with infinite-dimensional measure. Here, we present some
least squares methods and their extensions to Bochner spaces. In Section 3 and 4, we apply the
results of Section 2 to linear approximation for parametric elliptic PDE equation with affine or log-
normal random inputs, and for infinite-dimensional holomorphic functions on R∞, respectively. In
Section 5, we discuss constructiveness and alternative least squares methods which can be applied to
non-intrusive approximations for parametric PDEs and infinite-dimensional holomorphic functions.

Notations: As usual, N denotes the natural numbers, Z the integers, R the real numbers, C
the complex numbers, and N0 := {s ∈ Z : s ≥ 0}. We denote R∞ and I∞ := [−1, 1]∞ the sets
of all sequences y = (yj)j∈N with yj ∈ R and yj ∈ [−1, 1], respectively, and C∞ the set of all
sequences z = (yj)j∈N with zj ∈ C. Denote by F the set of all sequences of non-negative integers
s = (sj)j∈N such that their support supp(s) := {j ∈ N : sj > 0} is a finite set. If a = (aj)j∈J
is a set of positive numbers with any index set J , then we use the notation a−1 := (a−1

j )j∈J .

For s, s′ ∈ F and y ∈ R∞, denote: s! :=
∏

j∈N sj !; ys :=
∏

j∈N y
sj
j ;

(
s
s′

)
:=
∏

j∈N
(sj
s′j

)
. We use

letter C to denote general positive constants which may take different values, and Ca,b,... a positive
constant depending on a, b, ... For the quantities An(f,k) and Bn(f,k) depending on n ∈ N,
f ∈ W , k ∈ Zd, we write An(f,k) ≲ Bn(f,k), f ∈ W , k ∈ Zd (n ∈ N is specially dropped), if
there exists some constant C > 0 such that An(f,k) ≤ CBn(f,k) for all n ∈ N, f ∈ W , k ∈ Zd

(the notation An(f,k) ≳ Bn(f,k) has the obvious opposite meaning), and An(f,k) ≍ Bn(f,k) if
An(f,k) ≲ Bn(f,k) and Bn(f,k) ≲ An(f,k). Denote by |G| the cardinality of the set G.

2 Sampling recovery in Bochner spaces

In this section, we show that the problem of linear sampling recovery of functions in the space
HX,σ for a general separable Hilbert space X can be reduced to the particular case of the RKHS
HC,σ. This allows, in particular, to extend linear least squares sampling algorithms in HC,σ to
HX,σ while preserving the accuracy of approximation. Hence, we are able to derive convergence
rates of various extended linear least squares sampling algorithms for functions in BX,σ based on
some recent results on inequalities between sampling widths and Kolmogorov widths of the unit
ball BC,σ which are realized by linear least squares sampling algorithms.

2.1 Extension of least squares approximation to Bochner spaces

Recall that, (φs)s∈N is a fixed orthonormal basis of L2(U,C;µ) and for a function v ∈ L2(U,X;µ)
the expansion (1.1) holds, with coefficients (vs)s∈N defined as in (1.1). We will need the following
auxiliary result. Let AX be a general linear operator in L2(U,X;µ) defined for v ∈ L2(U,X;µ) by

AXv :=
∑
k∈N

(∑
s∈N

ak,svs

)
φk, (2.1)

where (ak,s)(k,s)∈N2 is an infinite-dimensional matrix.

Lemma 2.1 Let AX be linear and bounded. There holds the equality∥∥AX
∥∥
HX,σ→L2(U,X;µ)

=
∥∥AC∥∥

HC,σ→L2(U,C;µ)
.
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Proof. For a function f ∈ HC,σ, we have the series expansion

f =
∑
s∈N

fsφs with (σs|fs|)s∈N ∈ ℓ2(N),

and by the operator norm in the classical Lebesgue space

∥ACf∥2L2(U,C;µ) ≤
∥∥AC∥∥2

HC,σ→L2(U,C;µ)
∥f∥2HC,σ .

Using the series expansion of f and the definition of AC from (2.1), the last inequality is equivalent
to ∑

k∈N

∣∣∣∣∣∑
s∈N

ak,sfs

∣∣∣∣∣
2

≤
∥∥AC∥∥2

HC,σ→L2(U,C;µ)

∑
s∈N

σ2s |fs|2 . (2.2)

Because this is independent of the choice of f , it holds for all sequences (σs|fs|)s∈N ∈ ℓ2(N).
For the Hilbert-valued case v ∈ HX,σ, we have

v =
∑
s∈N

vsφs with (σs∥vs∥X)s∈N ∈ ℓ2(N),

and

∥AXv∥2L2(U,X;µ) =
∑
k∈N

∥∥∥∥∥∑
s∈N

ak,svs

∥∥∥∥∥
2

X

.

Let (ψj)j∈N be an orthonormal basis of X and

vs =
∑
j∈N

(vs)jψj .

Then,

AXv =
∑
k∈N

(∑
s∈N

∑
j∈N

ak,s(vs)jψj

)
φk.

Since (φkψj)k,j∈N is an orthonormal basis of L2(U,X;µ), by applying (2.2) to fs = (vs)j , we obtain

∥AXv∥2L2(U,X;µ) =
∑
j∈N

∑
k∈N

∣∣∣∣∣∑
s∈N

ak,s(vs)j

∣∣∣∣∣
2

≤
∥∥AC∥∥2

HC,σ→L2(U,C;µ)

∑
j∈N

∑
s∈N

σ2s |(vs)j |2

=
∥∥AC∥∥2

HC,σ→L2(U,C;µ)

∑
s∈N

σ2s∥vs∥2X =
∥∥AC∥∥2

HC,σ→L2(U,C;µ)
∥v∥2HX,σ

.

This proves the inequality ∥∥AX
∥∥
HX,σ→L2(U,X;µ)

≤
∥∥AC∥∥

HC,σ→L2(U,C;µ)
.
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In order to prove the inverse inequality, let
(
f (n)

)
n∈N ⊂ HC,σ be a sequence such that ∥f (n)∥HC,σ =

1 and
lim
n→∞

∥∥ACf (n)
∥∥
L2(U,C;µ)

=
∥∥AC∥∥

HC,σ→L2(U,C;µ)
.

Define v(n) := f (n)ψ1. Then ∥v(n)∥HX,σ
= 1 and

∥∥AXv(n)
∥∥2
L2(U,X;µ)

=
∑
k∈N

∥∥∥∥∥∑
s∈N

ak,s⟨f (n), φs⟩L2(U,C;µ)η1

∥∥∥∥∥
2

X

=
∑
k∈N

∣∣∣∣∣∑
s∈N

ak,s⟨f (n), φs⟩L2(U,C;µ)

∣∣∣∣∣
2

=
∥∥ACf (n)

∥∥2
L2(U,C;µ)

→
∥∥AC∥∥

HC,σ→L2(U,C;µ)
as n→ ∞.

This proves the inequality ∥∥AX
∥∥
HX,σ→L2(U,X;µ)

≥
∥∥AC∥∥

HC,σ→L2(U,C;µ)
.

The following theorem plays a key role in transferring current results on linear sampling re-
covery of functions in RKHSs [11, 27, 32, 33], into semi-discrete non-intrusive approximation for
parametric PDEs with random inputs, based on finite number of particular solvers.

Recall that U0 ⊂ U is a fixed set of full measure such that if v ∈ HX,σ, the pointwise evaluations
v(y) are well-defined for every y ∈ U0.

Theorem 2.1 Given arbitrary sample points y1, . . . ,yn ∈ U0 and functions h1, . . . , hn ∈
L2(U,C;µ), for the sampling algorithm SX

n in L2(U,X;µ) defined by (1.2), we have that

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

= sup
f∈BC,σ

∥∥∥f − SC
n f
∥∥∥
L2(U,C;µ)

, (2.3)

moreover,
ϱn(BX,σ, L2(U,X;µ)) = ϱn(BC,σ, L2(U,C;µ)). (2.4)

Proof. Denote by IX the identity operator in L2(U,X;µ). Let SX
n be an arbitrary sampling

operator in L2(U,X;µ) given for v ∈ L2(U,X;µ) by

SX
n v(y) :=

n∑
i=1

v(yi)hi(y).

Applying Lemma 2.1 with AX := IX − SX
n , we get∥∥IX − SX

n

∥∥
HX,σ→L2(U,X;µ)

=
∥∥∥IC − SC

n

∥∥∥
HC,σ→L2(U,C;µ)

.

Consequently, we obtain (2.3).
Since the correspondence between SX

n and SC
n is one-to-one, we use (2.3) to show

inf
SX
n ∈SX

n

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

= inf
SC
n∈SC

n

sup
f∈BC,σ

∥∥∥f − SC
n f
∥∥∥
L2(U,C;µ)

,
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which proves (2.4).
Let us construct an extension of a least squares approximation in the space L2(U,C;µ) to a

space L2(U,X;µ). For n,m ∈ N with n ≥ m, let y1, . . . ,yn ∈ U0 be points, ω1, . . . , ωn ≥ 0 be
weights, and Vm = span{φj}mj=1 the subspace spanned by the functions φj , j = 1, ...,m. The
weighted least squares approximation

SC
n f = SC

n (y1, . . . ,yn, ω1, . . . , ωn, Vm)f

of a function f : U → C is given by

SC
n f = argming∈Vm

n∑
i=1

ωi|f(yi)− g(yi)|2. (2.5)

The least squares approximation can be computed using the Moore-Penrose inverse, and it is
the approximation of smallest error for over-determined systems where no exact solution can be
expected. In particular, for L = [φs(yi)]i=1,...,n; s=1,...,m and W = diag(ω1, . . . , ωn) we have

SC
n f =

m∑
s=1

ĝsφs with (ĝ1, . . . , ĝm)⊤ = (W 1/2L)+W 1/2(f(y1), . . . , f(yn))
⊤, (2.6)

where (W 1/2L)+ denotes the pseudo-inverse of W 1/2L. In the presented theorems the setting is
such that the matrix W 1/2L has full rank and we have (W 1/2L)+ = (L∗WL)−1L∗W 1/2. For
every n ∈ N, let

SC
n f :=

n∑
i=1

f(yi)hi, (2.7)

be the least squares sampling algorithm constructed as in (2.5)–(2.6) for these sample points
and weights, where h1, ..., hn ∈ L2(U,C;µ). Hence we immediately obtain the extension of this
least squares algorithm to the Bochner space L2(U,X;µ) by replacing f ∈ L2(U,C;µ) with v ∈
L2(U,X;µ):

SX
n v := SX

n (y1, . . . ,yn, ω1, . . . , ωn, Vm)v :=

n∑
i=1

v(yi)hi. (2.8)

As the least squares approximation is a linear operator, worst-case error bounds carry over from
the usual Lebesgue space L2(U,C;µ) to the Bochner space L2(U,X;µ).

Let n ∈ N and E be a normed space and F a central symmetric compact set in E. Then the
Kolmogorov n-width of F is defined by

dn(F,E) := inf
Ln

sup
f∈F

inf
g∈Ln

∥f − g∥E ,

where the left-most infimum is taken over all subspaces Ln of dimension at most n in E.
We make use of the abbreviation dn := dn(BC,σ, L2(U,C;µ)). In our setting, we know that

dn = σ−1
n+1.

From Theorem 2.1 we can derive the following lemma, which extends to Bochner spaces the
recent important result of [27, Theorem 1] on an inequality between sampling widths and Kol-
mogorov widths in RKHSs.
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Lemma 2.2 For any n ∈ N, there exist points y1, . . . ,yn ∈ U0 and weights ω1, . . . , ωn such that

sup
v∈BX,σ

∥∥∥v − S̃X
n v
∥∥∥2
L2(U,X;µ)

≤ 433max

d2⌊n/43200⌋, 43200n

∑
s≥⌊n/43200⌋

d2s

 ,

where
S̃X
n := SX

n (y1, . . . ,yn, ω1, . . . , ωn, Vm) and n ≥ m ≥ n

43200
. (2.9)

Proof. For the particular case when X = C, this theorem is implied immediately from [27, Theo-
rem 23]. Hence, by using Theorem 2.1 we prove the lemma.

2.2 Convergence rates

Lemma 2.3 Let ∥σ−1∥ℓq(N) ≤ 1 for some 0 < q ≤ 2. Then we have that

dn(BC,σ, L2(U,C;µ)) ≤ (n+ 1)−1/q ∀n ∈ N. (2.10)

Proof. For ξ > 0, we introduce the set

Λ(ξ) :=
{
s ∈ N : σqs ≤ ξ

}
.

For a function f ∈ BC,σ represented by the series (1.1), we define the truncation

SΛ(ξ)f :=
∑

s∈Λ(ξ)

fsφs. (2.11)

Applying the Parseval’s identity, noting (2.11), we obtain

∥f − SΛ(ξ)f∥2L2(U,C;µ) =
∑

σ: σs>ξ1/q

|fs|2 =
∑

σ: σs>ξ1/q

(σs|fs|)2σ−2
s

≤ ξ−2/q
∑
s∈N

(σs|fs|)2 ≤ ξ−2/q.

The function SΛ(ξ)f belongs to the linear subspace L(ξ) := span{φs : s ∈ Λ(ξ)} in L2(U,C;µ) of
dimension |Λ(ξ)|. We have

|Λ(ξ)| ≤
∑

σ: σs≤ξ1/q

1 ≤ ξ
∑
s∈N

σ−q
s ≤ ξ

as ∥σ−1∥ℓq(N) ≤ 1. For a given n ∈ N,

dn(BC,σ, L2(U,C;µ)) ≤ ∥f − SΛ(ξ)f∥L2(U,C;µ) ≤ ξ−1/q

for arbitrary ξ < n+ 1 satisfying the inequality |Λ(ξ)| ≤ n. Hence, by taking the supremum over
all such ξ we obtain (2.10).
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Corollary 2.1 Let 0 < q < 2 and ∥σ−1∥ℓq(N) ≤ 1. Then there exists a constant Cdepending on q
only such that, for any n ∈ N, there exist points y1, . . . ,yn ∈ U0 and weights ω1, . . . , ωn such that

ϱn(BX,σ, L2(U,X;µ)) ≤ sup
v∈BX,σ

∥∥∥v − S̃X
n v
∥∥∥
L2(U,X;µ)

≤ Cn−1/q,

where S̃X
n is defined as in (2.9).

Moreover,

(n+ 1)−1/q ≤ sup
σ: ∥σ−1∥ℓq(N)≤1

ϱn(BX,σ, L2(U,X;µ)) ≍ n−1/q.

Proof. The upper bound in this theorem is derived from Lemmas 2.2 and 2.3, the asymptotic
equivalence √

1

m

∑
k≥m

k−2/q ≍ m−1/q, m ∈ N,

and from the fact that this bound is independent of the sequence σ. To prove the lower bound,
one can take σ = (σs)s∈N with σs = (n + 1)1/q for s ≤ n + 1, and σs = 2Ks/q for s > n + 1 with
arbitrary K ∈ N. It is easy to check that

∥∥σ̃−1
∥∥
ℓq(N) ≤ 1, where σ̃ := (1 + 2−Kn)−1/qσ. We then

have by Theorem 2.1 that

ϱn(BX,σ̃, L2(U,X;µ)) = ϱn(BC,σ̃, L2(U,C;µ)) ≥ dn(BC,σ̃, L2(U,C;µ))

= σ̃−1
n+1 = (n+ 1)−1/q(1 + 2−Kn)−1/q.

Since K is arbitrary, we get

sup
σ: ∥σ−1∥ℓq(N)≤1

ϱn(BX,σ, L2(U,X;µ)) ≥ n−1/q .

Next, we apply Corollary 2.1 to Bochner spaces with infinite tensor-product probability mea-
sure, which appear in approximation of solutions to parametric PDEs with random inputs and of
holomorphic functions in Sections 3 and 4, respectively.

For given a, b > −1, let νa,b be the Jacobi probability measure on I := [−1, 1] with the density

δa,b(y) := ca,b(1− y)a(1 + y)b, ca,b :=
Γ(a+ b+ 2)

2a+b+1Γ(a+ 1)Γ(b+ 1)
.

Let (Jk)k∈N0 be the sequence of Jacobi polynomials on I := [−1, 1] normalized with respect to the
Jacobi probability measure νa,b, i.e.,∫

I
|Jk(y)|2dνa,b(y) =

∫
I
|Jk(y)|2δa,b(y)dy = 1, k ∈ N0.

Let γ be the standard Gaussian probability measure on R with the density

g(y) :=
1√
2π
e−y2/2.
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Let (Hk)k∈N0 be the sequence of Hermite polynomials on R normalized with respect to the measure
γ, i.e., ∫

R
|Hk(y)|2dγ(y) =

∫
R
|Hk(y)|2g(y)dy = 1, k ∈ N0.

Throughout this section, we use the joint notation: U denotes either I or R; U∞ either I∞ or
R∞;

µ :=

{
νa,b if U = I,
γ if U = R;

ϕk :=

{
Jk if U = I,
Hk if U = R.

We next recall the concept of probability measure µ(y) on U∞ as the infinite tensor product of
the measures µ(yi):

µ(y) :=
⊗
j∈N

µ(yj), y = (yj)j∈N ∈ U∞.

(The sigma algebra for µ(y) is generated by the set of cylinders A :=
∏

j∈NAj , where Aj ⊂ U
are univariate Lebesgue measurable sets and only a finite number of Ai are different from U. For
such a set A, we have µ(A) =

∏
j∈N µ(Aj)).

Let X be a separable Hilbert space. Then a function v ∈ L2(U∞, X;µ) can be represented by
the generalized polynomial chaos (GPC) expansion

v =
∑
s∈F

vs ϕs, vs ∈ X, (2.12)

with

ϕs(y) =
⊗
j∈N

ϕsj (yj), vs :=

∫
U∞

v(y)ϕs(y) dµ(y), s ∈ F.

Here F is the set of all sequences of non-negative integers s = (sj)j∈N such that their support
supp(s) := {j ∈ N : sj > 0} is a finite set.

For a set σ = (σs)s∈F of positive numbers, denote by BX,σ(U∞) the set of all functions
v ∈ L2(U∞, X;µ)) represented by the series (2.12) such that(∑

s∈F
(σs∥vs∥X)2

)1/2

≤ 1.

Notice that if ∥σ−1∥ℓq(F) < ∞ for some 0 < q ≤ 2, then for every v ∈ BX,σ(U∞), the series
(2.12) converges absolutely and unconditionally in L2(U∞, X;µ) to v (see [24, Lemma 3.1] for the
case U∞ = R∞, the case U∞ = I∞ can be proven by the same arguments). Hence, we can reorder
the countable set F as F = (sj)j∈N so that the sequence σ = (σsj )j∈N is non-decreasing. Put
U := U∞, σj := σsj , φj := ϕsj and vj := vsj . Then BX,σ(U∞) can be seen as the set BX,σ,
defined as in Section 1, of all functions v ∈ L2(U,X;µ)) represented by the series

v =
∑
j∈N

vj φj , vj ∈ X,
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such that ∑
j∈N

(σj∥vj∥X)2

1/2

≤ 1.

In the next sections, due to this representation of BX,σ(U∞), we are able to employ Corollary 2.1
in various applications.

3 Applications to parametric elliptic PDEs

3.1 Introductory remarks

For parametric PDEs, since the number of parametric variables may be very large or even infinite,
they are treated as high-dimensional or infinite-dimensional approximation problems. As a model
we consider parametric divergence-form elliptic PDEs with random inputs.

Let D ⊂ Rd be a bounded Lipschitz domain. Consider the diffusion elliptic equation

− div(a(x)∇u(x)) = f(x), x ∈ D, u|∂D = 0, (3.1)

for a given fixed right-hand side f ∈ H−1(D) and a spatially variable scalar diffusion coefficient a.
Denote by V := H1

0 (D) the energy space. If a ∈ L∞(D) satisfies the ellipticity assumption

0 < amin ≤ a ≤ amax <∞,

by the well-known Lax-Milgram lemma, there exists a weak unique solution u ∈ V to the equa-
tion (3.1), satisfying ∫

D
a(x)∇u(x) · ∇v(x) dx = ⟨f, v⟩, ∀v ∈ V.

PDEs with parametric and stochastic inputs are a common model used in science and engi-
neering. Depending on the nature of the modeled object, the parameters involved in them may be
either deterministic or random. The random nature reflects the uncertainty in various parameters
presented in the physical phenomenon modeled by the equation. For equation (3.1), we consider
the diffusion coefficients having a parametric form a = a(y), where y = (yj)j∈N is a sequence
of real-valued parameters ranging in the set U∞ which is either R∞ or I∞. Denote by u(y) the
solution to the parametric elliptic diffusion equation

−div(a(y)(x)∇u(y)(x)) = f(x), x ∈ D, y ∈ R∞, u(y)|∂D = 0, y ∈ U∞. (3.2)

The resulting solution operator maps y ∈ U∞ to u(y) ∈ V . The objective is to achieve a numerical
approximation of this complex map by a small number of parameters with a guaranteed error in
a given norm.

In this section, we consider both the log-normal case when U∞ = R∞ and the diffusion coeffi-
cient a is of the form

a(y) = exp(b(y)), with b(y) =

∞∑
j=1

yjψj , (3.3)
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and yj are i.i.d. standard Gaussian random variables, and the affine case when U∞ = I∞ and the
diffusion coefficient a is of the form

a(y) = ā+
∞∑
j=1

yjψj , (3.4)

and yj are i.i.d. standard Jacobi random variables. Here ā ∈ L∞(D) and ψj ∈ L∞(D) for both
cases.

An approach to studying summability that takes into account the support properties of the com-
ponent functions ψj , has been recently proposed in [9] for the affine parametric case, in [8] for the
log-normal parametric case, and in [7] for extensions of both cases to second-order Sobolev norms
of the corresponding GPC expansion coefficients. This approach leads to significant improvements
on the results on ℓp-summability and weighted ℓ2-summability of GPC expansion coefficients, and
therefore, on best n-term semi-discrete and fully discrete approximations when the component
functions ψj have limited overlap, such as splines, finite elements or compactly supported wavelet
bases. In this section, we will employ the results of the previous section to obtain convergence
rates of sampling recovery of solutions to parametric elliptic PDEs with random inputs, which are
derived from results on weighted ℓ2-summability in [7, 9].

3.2 Convergence rates

We first present some known weighted ℓ2-summability results for solutions u of parametric elliptic
PDEs with random inputs.

For the log-normal case, we have the following result on weighted ℓ2-summability.

Lemma 3.1 Let 0 < q < ∞, η ∈ N with η > 2/q, and ρ := (ρj)j∈N be a sequence of positive
numbers such that ρ−1 ∈ ℓq(N), and for the log-normal parametric diffusion coefficient a(y) as in
(3.3), ∥∥∥∥∥∥

∑
j∈N

ρj |ψj |

∥∥∥∥∥∥
L∞(D)

<∞ . (3.5)

Then for the weak solution u to the parametric elliptic PDE (3.2) with the log-normal diffusion
coefficient as in (3.3), there exist positive constants M,N such that(∑

s∈F
(σs∥us∥V )2

)1/2

≤M <∞ with
∥∥σ−1

∥∥
ℓq(F) ≤ N <∞, (3.6)

where with |s′|∞ := supj∈N s
′
j we define σ := σ(η,ρ) = (σs(η,ρ))s∈F as

σ2s := σs(η,ρ)
2 :=

∑
s′: |s′|∞≤η

(
s

s′

)∏
j∈N

ρ
2s′j
j , s ∈ F. (3.7)

Proof. A proof of this lemma is given in an implicit form in [8]. For completeness, let us present
a short proof. By [8, Theorems 3.3 and 4.2], there exists a constant M such that∑

s∈F
(σs∥us∥V )2 =

∑
s′: |s′|∞≤η

ρ2s′

s′!

∫
R∞

∥∥∥∂s′u(y)∥∥∥2
V
dγ(y) ≤M. (3.8)
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This proves the first inequality in (3.6). Since ρ−1 ∈ ℓq(N), from [8, Lemma 5.1] the second
inequality in (3.6) is implied.

For the affine case, we have the following result on weighted ℓ2-summability.

Lemma 3.2 Let ess inf ā > 0. Let 0 < q <∞ and (ρj)j∈N be a sequence of positive numbers such
that (ρ−1

j )j∈N belongs to ℓq(N), and for the affine parametric diffusion coefficient a(y) as in (3.4),∥∥∥∥
∑

j∈N ρj |ψj |
ā

∥∥∥∥
L∞(D)

< 1. (3.9)

Then for the weak solution u to the parametric elliptic PDE (3.2) with the affine diffusion coefficient
as in (3.4), there exist positive constants M,N such that we have that(∑

s∈F
(σs∥us∥V )2

)1/2

≤M <∞ with
∥∥σ−1

∥∥
ℓq(F) ≤ N <∞, (3.10)

where σ := σ(ρ) = (σs(ρ))s∈F is defined by

σs := σs(ρ) :=
∏
j∈N

ca,bsj ρ
sj
j ,

and ca,b0 := 1,

ca,bk :=

√
(2k + a+ b+ 1)k!Γ(k + a+ b+ 1)Γ(a+ 1)Γ(b+ 1)

Γ(k + a+ 1)Γ(k + b+ 1)Γ(a+ b+ 2)
, k ∈ N.

Proof. A proof of this lemma is presented in an implicit form in [9] and [7]. The first inequality in
(3.10) follows from [9, Remark 5.3], the second one from [7, (63)].

Notice that assumptions (3.5) and (3.9) are different from the assumption
(
∥ψj∥L∞(D)

)
j∈N ∈

ℓp(N) considered in [13, 18, 19], or
(
j∥ψj∥L∞(D)

)
j∈N ∈ ℓp(N) considered in [31] for some 0 < p < 1.

The latter do not take into account the support properties of the component functions ψj , and
hence, lead to worse results when the overlaps of the supports of ψj are finite. For a more detailed
discussion on the advantages of assumptions (3.5) and (3.9) over these ones, we refer the reader to
[9, 8, 22, 28].

We are now in a position to formulate the most significant result of our study. Let

Vm := span{ϕsj}mj=1

be the subspace spanned by the (Hermite or Jacobi) polynomials ϕsj , j = 1, ...,m. Let U∞
0 ⊂ U∞

be a fixed set of full measure such that the pointwise evaluations u(y) are well-defined for every
y ∈ U∞

0 . (Such a set exists due to Lemma 3.1 or Lemma 3.2.) By applying Corollary 2.1, from
Lemmata 3.1 and 3.2, and utilizing the homogeneous argument we obtain

15



Theorem 3.1 Let the assumptions and notations of Lemma 3.1 or of Lemma 3.2 with 0 < q < 2
hold for the log-normal case (3.3) (U∞ = R∞) or for the affine case (3.4) (U∞ = I∞), respectively.
Let u be the weak solution to the parametric elliptic PDE (3.2) with the log-normal diffusion
coefficient as in (3.3) or the affine diffusion coefficient as in (3.4), respectively. Then for any
n ∈ N, there exist points y1, . . . ,yn ∈ U∞

0 and weights ω1, . . . , ωn such that∥∥∥u− S̃V
n u
∥∥∥
L2(U∞,V ;µ)

≤ CMNn−1/q

with a constant C independent of n,M,N and u, where S̃V
n is defined as in (2.9) for X = V .

4 Applications to holomorphic functions

The sparsity analysis for parametric elliptic PDEs with log-normal diffusion coefficients, as in [7, 8],
hinges on real-variable bootstrapping to establish sparsity. This approach encounters technical ob-
stacles when extending to higher spatial regularity or more general parametric PDEs. By contrast,
complex-variable methods proposed in [28], using holomorphic extension of the solution offer an
alternative pathway to sparsity and regularity, often simplifying the treatment of smoothness and
broadening applicability. One advantage of establishing sparsity of Hermite GPC expansion co-
efficients via holomorphy rather than by successive differentiation is that it allows to derive, in a
unified way, weighted ℓ2-summability bounds for the coefficients of Hermite GPC expansion whose
size is measured in Sobolev scales in the domain D.

Formally, in the log-normal case (3.3) of the parametric equation (3.2), replacing y = (yj)j∈N ∈
R∞ in the coefficient a(y) in (3.3) by z = (zj)j∈N = (yj + iξj)j∈N ∈ C∞, the real part of a(z) is

R[a(z)] = exp

(∑
j∈N

yjψj(x)

)
cos

(∑
j∈N

ξjψj(x)

)
.

We find that R[a(z)] > 0 if ∥∥∥∥∑
j∈N

ξjψj

∥∥∥∥
L∞(D)

<
π

2
.

This motivates the study of the analytic continuation of the solution map y 7→ u(y) to z 7→ u(z)
for complex parameters z = (zj)j∈N where each zj lies in the strip

Sj(ρ) := {zj ∈ C : |Imzj | < ρj} (4.1)

and where ρj > 0 and ρ = (ρj)j∈N is any sequence of positive numbers such that∥∥∥∥∥∑
j∈N

ρj |ψj |

∥∥∥∥∥
L∞(D)

<
π

2
.

Let ρ = (ρj)j∈N be a sequence of non-negative numbers and assume that J ⊆ supp(ρ) is finite.
Define for y ∈ R∞,

SJ(y,ρ) :=
{
(zj)j∈N ∈ C∞ : zj ∈ Sj(ρ) if j ∈ J, and zj = yj if j ̸∈ J

}
. (4.2)
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For the definition of Sobolev spaces Hr := Hr(D) and W r
∞ := W r

∞(D) as well as that of a
Cm-domain see, e.g., [1]. The following result on holomorphy of the parametric solution has been
proven in [28, Proposition 3.21].

Lemma 4.1 Let r ∈ N and D be a bounded domain with either C∞-boundary or convex Cr−1-
boundary. Let the sequence ρ = (ρj)j∈N ∈ [0,∞)∞ satisfy∥∥∥∥∥∑

j∈N
ρj |ψj |

∥∥∥∥∥
L∞(D)

≤ κ <
π

2
. (4.3)

Let y0 = (y0,1, y0,2, . . .) ∈ R∞ be such that b(y0) belongs to W r−1
∞ , and let J ⊆ supp(ρ) be a finite

set. Then the weak parametric solution u of the variational form of (3.2) with log-lognornal random
inputs (3.3) is holomorphic on SJ(y0,ρ) as a function of the parameters zJ = (zj)j∈N ∈ SJ(y0,ρ)
taking values in Hr(D) with zj = y0,j for j ̸∈ J held fixed.

Based on the holomorphy of the parametric solution as in Lemma 4.1, a weighted ℓ2-
summability of the Sobolev Hr-norm of the Hermite GPC expansion coefficients of the parametric
solution u has been established in [28, Theorem 3.25] as follows.

Lemma 4.2 Let r ∈ N, D be a bounded domain with either C∞-boundary or convex Cr−1-
boundary, and f ∈ Hr−1(D). Assume that for every j ∈ N, ψj ∈ W r−1

∞ , and there exists a
positive sequence (λj)j∈N such that (exp(−λ2j ))j∈N ∈ ℓ1(N) and the series

∑
j∈N λj |Dαψj | con-

verges in L∞(D) for all α ∈ Nd
0 with |α| ≤ r − 1. Let ϱ = (ϱj)j∈N be a sequence of positive

numbers satisfying (ϱ−1
j )j∈N ∈ ℓq(N) for some 0 < q < ∞. Assume that, for each s ∈ F, there

exists a sequence ρs = (ρs,j)j∈N of non-negative numbers such that supp(s) ⊆ supp(ρs),

sup
s∈F

∑
|α|≤s−1

∥∥∥∥∥∑
j∈N

ρs,j |Dαψj |

∥∥∥∥∥
L∞(D)

≤ κ <
π

2
, and

∑
s′: |s|∞≤η

s!ϱ2s

ρ2s
s

<∞ (4.4)

with η ∈ N, η > 2/q. Let u be the weak solution to the parametric elliptic PDE (3.2) with the
log-normal diffusion coefficient as in (3.3). Then exist positive constants M,N such that∑

s∈F
(σs(η,ϱ)∥us∥Hr)2 ≤M <∞ with

∥∥σ(η,ϱ)−1
∥∥
ℓq(F) ≤ N <∞, (4.5)

where σ(η,ϱ) = (σs(η,ϱ))s∈F is given by (3.7).
By applying Corollary 2.1, from Lemma 4.2, under the assumptions and notation of Lemma 4.2,

and utilizing the homogeneous argument we again obtain

Corollary 4.1 Let the assumptions and notation of Lemma 4.2 hold for some 0 < q < 2. Let u
be the weak solution to the parametric elliptic PDE (3.2) with the log-normal diffusion coefficient
as in (3.3). Then for any n ∈ N, there exist points y1, . . . ,yn ∈ U∞

0 and weights ω1, . . . , ωn such
that ∥∥∥u− S̃Hr

n u
∥∥∥
L2(R∞,Hr;γ)

≤ CMNn−1/q (4.6)

with a constant C independent of n,M,N and u, where S̃Hr

n is defined as in (2.9) for X = Hr.
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The convergence rate in (4.6) of Corollary 4.1 is an entirely new result for semi-discrete non-
intrusive approximation of the parametric solution u(y), which significantly improved by a factor
n−1/2 the previous result which is implied from [28, Thoerem 6.13] for X = Hr.

The results of Lemmata 4.1 and 4.2 encourage us to investigate the holomorphy and weighted
ℓ2-summability as a sequence for a wider class of functions on R∞ and application to approxima-
tion for parametric PDEs with log-normal random inputs. We recall the concept of “(b, ξ, ε,X)-
holomorphic functions” on R∞ which has been introduced in [28, Definition 4.1] for general para-
metric PDEs with random input data. For m ∈ N and a positive sequence ϱ = (ϱj)

m
j=1, we

put
S(ϱ) := {z ∈ Cm : |Imzj | < ϱj ∀j} and B(ϱ) := {z ∈ Cm : |zj | < ϱj ∀j}.

Let X be a complex separable Hilbert space, b = (bj)j∈N a positive sequence, and ξ > 0, ε > 0.
For m ∈ N we say that a positive sequence ϱ = (ϱj)

m
j=1 is (b, ξ)-admissible if

m∑
j=1

bjϱj ≤ ξ .

A function v ∈ L2(R∞, X; γ) is called (b, ξ, ε,X)-holomorphic if

(i) for every m ∈ N there exists vm : Rm → X, which, for every (b, ξ)-admissible ϱ, admits a
holomorphic extension (denoted again by vm) from S(ϱ) → X; furthermore, for all m < m′

vm(y1, . . . , ym) = vm′(y1, . . . , ym, 0, . . . , 0) ∀(yj)mj=1 ∈ Rm,

(ii) for every m ∈ N there exists φm : Rm → R+ such that ∥φm∥L2(Rm;γ) ≤ ε and

sup
ϱ is (b, ξ)-adm.

sup
z∈B(ϱ)

∥vm(y + z)∥X ≤ φm(y) ∀y ∈ Rm,

(iii) with ṽm : R∞ → X defined by ṽm(y) := vm(y1, . . . , ym) for y ∈ R∞ it holds

lim
m→∞

∥v − ṽm∥L2(R∞,X;γ) = 0.

We notice some important examples of (b, ξ, ε,X)-holomorphic functions on R∞ which are
solutions to parametric PDEs equations with log-normal random inputs and which were studied
in [28]. Let b(y) be defined as in (3.3) and V a holomorphic map from an open set in L∞(D) to
X. Then function compositions of the type

v(y) = V(exp(b(y)))

are (b, ξ, ε,X)-holomorphic under certain conditions [28, Proposition 4.11]. This allows us to
apply weighted ℓ2-summability for approximation of solutions v(y) = V(exp(b(y))) as (b, ξ, ε,X)-
holomorphic functions on various function spaces X, to a wide range of parametric and stochastic
PDEs with log-normal inputs. Such function spaces X are high-order regularity spaces Hs(D) [28,
Section 4.3.1] and corner-weighted Sobolev (Kondrat’ev) spaces Ks

κ(D) (s ≥ 1) for the parametric
elliptic PDEs (3.1) with log-normal inputs (3.3) [28, Section 7.6.1]; spaces of solutions to linear
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parabolic PDEs with log-normal inputs (3.3) [28, Section 4.3.2]; spaces of solutions to linear elastics
equations with log-normal modulus of elasticity [28, Section 4.3.3]; spaces of solutions to Maxwell
equations with log-normal permittivity [28, Section 4.3.4]; spaces of posterior densities and of their
linear functionals in Bayesian inverse problems [28, Section 5], etc..

The following key result on weighted ℓ2-summability of (b, ξ, ε,X)-holomorphic functions has
been proven in [28, Theorem 4.9].

Lemma 4.3 Let v be (b, ξ, ε,X)-holomorphic for some b ∈ ℓp(N) with 0 < p < 1. Let η ∈ N and
let the sequence ρ = (ρj)j∈N be defined by

ρj := bp−1
j

ξ

4
√
η! ∥b∥ℓp(N)

.

Then we have (∑
s∈F

(σs∥vs∥X)2

)1/2

≤M <∞, with
∥∥σ−1

∥∥
ℓq(F) ≤ N <∞,

where q := p/(1− p), σ := σ(η,ρ) = (σs(η,ρ))s∈F is given by (3.7), M = εCb and N = Cb,ξ with
some positive constants Cb and Cb,ξ.

Let R∞
0 ⊂ R∞ be a fixed set of full Gaussian measure such that the pointwise evaluations u(y)

are well-defined for every y ∈ R∞
0 . (Such a set exists due to Lemma 4.3.) By applying Corollary

2.1, from Lemma 4.3, and utilizing the homogeneous argument we obtain

Theorem 4.1 Let v be (b, ξ, ε,X)-holomorphic for some b ∈ ℓp(N) with 0 < p < 2/3. Then for
any n ≥ 2, there exist points y1, . . . ,yn ∈ R∞

0 and weights ω1, . . . , ωn such that∥∥∥v − S̃X
n v
∥∥∥
L2(R∞,X;γ)

≤ CMNn−(1/p−1) (4.7)

with a constant C independent of of n and v, where M,N are as in Lemma 4.3 and S̃X
n is defined

as in (2.9).

The convergence rate in Theorem 4.1 notably improves the result [28, Theorem 6.13] by a
factor n−1/2.

We present two examples of application of Theorem 4.1 to parametric PDEs with random
inputs.

Let us revisit the parametric equation (3.2) with log-normal random inputs (3.3). Hence, if
(ψj)j∈N ⊂ L∞(D) such that b ∈ ℓ1(N) with bj := ∥ψj∥L∞(D), then the parametric weak solution

u(y) uniquely exists and is (b, ξ, ε, V )-holomorphic by [28, Theorem 4.11]. For details, see [28,
Section 4.3.1].

Assume in addition, that b is a sequence such that b ∈ ℓp(N) for some 0 < p < 2/3. Then the
parametric solution u(y) can be approximated by the extended least squares sampling algorithm
S̃V
n defined as in Theorem 4.1 for X = V , for which it holds the convergence rate (4.7).
We apply Theorem 4.1 to solutions to parametric linear parabolic PDEs with log-normal ran-

dom inputs. To establish this, let us present the holomorphic properties of solutions of these

19



equations. For details, see [28, Section 4.3.2]. Let 0 < T <∞ denote a finite time-horizon and let
D be a bounded domain with Lipschitz boundary ∂D in Rd. We define I := (0, T ) and consider
the initial boundary value problem for the linear parabolic PDE

∂u(t,x)
∂t − div

(
a(x)∇u(t,x)

)
= f(t,x), (t,x) ∈ I ×D,

u|∂D×I = 0,

u|t=0 = u0(x).

(4.8)

We denote V := H1
0 (D;C) and V ′ := H−1(D;C). Let

X := L2(I, V ) ∩H1(I, V ′) =
(
L2(I)⊗ V

)
∩
(
H1(I)⊗ V ′) (4.9)

equipped with the sum norm

∥u∥X :=
(
∥u∥2L2(I,V ) + ∥u∥2H1(I,V ′)

)1/2
, u ∈ X, (4.10)

where

∥u∥2L2(I,V ) =

∫
I
∥u(t, ·)∥2V dt ,

and

∥u∥2H1(I,V ′) =

∫
I
∥∂tu(t, ·)∥2V ′ dt .

To state a space-time variational formulation and to specify the data space for (4.8), we introduce
the test-function space

Y = L2(I, V )× L2(D) =
(
L2(I)⊗ V

)
× L2(D)

which we endow with the norm

∥v∥Y =
(
∥v1∥2L2(I,V ) + ∥v2∥2L2(D)

)1/2
, v = (v1, v2) ∈ Y .

Given a time-independent diffusion coefficient a ∈ L∞(D;C) and (f, u0) ∈ Y ′, the continuous
sesqui-linear and anti-linear forms corresponding to the parabolic problem (4.8) reads for u ∈ X
and v = (v1, v2) ∈ Y as

B(u, v) :=

∫
I

∫
D
∂tu v1dxdt+

∫
I

∫
D
a∇u · ∇v1dxdt+

∫
D
u0 v2dx

and

L(v) :=

∫
I

〈
f(t, ·), v1(t, ·)

〉
dt+

∫
D
u0 v2dx,

where ⟨·, ·⟩ is the anti-duality pairing between V ′ and V . Then the space-time variational (weak)
formulation of equation (4.8) is: Find a weak solution u ∈ X such that

B(u, v) = L(v), ∀v ∈ Y . (4.11)
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Assume that (f, u0) ∈ Y ′ and that

0 < ρ(a) := ess inf
x∈D

ℜ(a(x)) ≤ |a(x)| ≤ ∥a∥L∞(D) <∞, x ∈ D. (4.12)

Then there exists a unique solution u to the equation (4.11).
Consider the initial boundary value problem for the parametric linear parabolic PDE

∂u(y)(t,x)
∂t − div

(
a(y)(x)∇u(y)(t,x)

)
= f(t,x), (t,x) ∈ I ×D, y ∈ R∞,

u(y)(x)|∂D×I = 0, y ∈ R∞,

u(y)(x)|t=0 = u0(x), y ∈ R∞,

(4.13)

with log-normal inputs (3.3). Hence, if (ψj)j∈N ⊂ D such that b ∈ ℓ1(N) with bj := ∥ψj∥L∞(D),

then the parametric weak solution u(y) uniquely exists and and (b, ξ, ε,X)-holomorphic by [28,
Theorem 4.11].

Assume in addition, that b is a sequence such that b ∈ ℓp(N) for some 0 < p < 2/3. Then the
parametric weak solution u(y) to the equation (4.13) can be approximated by the extended least
squares sampling algorithm S̃X

n defined in Theorem 4.1 for the space X as in (4.9) and (4.10), for
which holds the convergence rate (4.7).

5 Constructiveness and alternative least squares methods

In this section, we present several different sampling schemes to use with the least squares al-
gorithms for functions in the RKHS HC,σ, and inequalities between sampling n-widths and Kol-
mogorov n-widths of the unit ball BC,σ. We explain then how to apply these inequalities to
obtain corresponding convergence rates of linear sampling recovery in abstract Bochner spaces
and of approximation of the parametric solution u(y) to parametric elliptic or parabolic PDEs
with log-normal inputs as well as of infinite-dimensional holomorphic functions.

The choice of points y1, . . . ,yn, weights ω1, . . . , ωn, and approximation space Vm is crucial for
the error of the least squares approximation. A lot of work has been done in the usual Lebesgue
space L2(U,C;µ) of which we present two more choices with a trade-off between constructiveness
and tightness of the bound and transfer them to the Bochner space L2(U,X;µ).

For m ∈ N, let the probability measure ν = ν(m) introduced in [33], be defined by

dν(y) := ϱ(y)dµ(y) :=
1

2

(
1

m

m∑
s=1

|φs(y)|2 +
∑∞

s=m+1 |σ−1
s φs(y)|2∑∞

s=m+1 σ
−2
s

)
dµ(y). (5.1)

Assumption 5.1 Let m ≥ 3.

(i) Let n = ⌈40m logm⌉. Let further y1, . . .yn ∈ U0 be points drawn i.i.d. with respect to ν and
ωi := (ϱ(yi))

−1.

(ii) Let m := n and ⌈40n log n⌉ points be drawn i.i.d. with respect to ν and subsampled using
[11, Algorithm 3] to n = ⌈bm⌉ points for some b > 1 + 1/m. Denote the resulting points by
y1, . . . ,yn ∈ U0 and ωi =

n
⌈40n logn⌉(ϱ(yi))

−1.
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Note that (i) and (ii) in Assumption 5.1 have been considered in [33] and [11].
Recall that we use the abbreviation dn := dn(BC,σ, L2(U,C;µ)).

Lemma 5.1 Let SX
n := SX

n (y1, . . . ,yn, ω1, . . . , ωn, Vm) be the extended least squares algorithm
defined as in (2.8). Then we have the following.

(i) The points from Assumption 5.1(i) fulfill with probability exceeding 1− (160 logn)/n

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

≤ 19max
{
d⌊n/(40 logn)⌋,

√√√√ log n

n

∑
s≥⌊n/(40 logn)⌋

d2s

}
.

(ii) The points from Assumption 5.1(ii) fulfill with probability exceeding 1− 8b/n

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

≤ 552
(b+ 1

b− 1

)3/2
max

{√
log n d⌊n/(2b)⌋,

√√√√ logn

n

∑
s≥⌊n/(2b)⌋

d2s

}
.

(iii) There exist points y1, . . . ,yn ∈ U0 and weights ωi ≥ 0 such that

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

≤ 4325max
{
d⌊n/43200⌋,

√√√√ 1

n

∑
s≥⌊n/43200⌋

d2s

}
.

Proof. by Theorem 2.1, it suffices to show the inequalities X = C. To prove (i) we use [10,
Theorem 7.7] with t = logm. An intermediate step in the proof states with probability exceeding
1− 4 exp(−t)

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

≤
√
3d2m +

168 logn

n

∑
s≥m+1

d2s ≤ 19max
{
dm,

√
log n

n

∑
s≥m+1

d2s

}
.

From the assumption on n we have n/(40 log n) ≤ m, which yields the first assertion and the
desired probability 1− exp(−t) = 1− 4/m ≥ 1− (160 logn)/n.

To prove (ii) we use [10, Theorem 7.8] with t = logm. An intermediate step in the proof states
with probability exceeding 1− 4 exp(−t) = 1− 4/m ≤ 1− 8b/n

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

≤

√√√√10858

3

(b+ 1)2

(b− 1)3
logm

(
2d2m +

168 log⌈40m logm⌉
⌈40m logm⌉

∑
s≥m+1

d2s

)
.

With m ≥ 3 we have

168 log⌈40m logm⌉
⌈40m logm⌉

≤ 168 log(41m logm)

40m logm
≤ 21

m
.
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Thus

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

≤

√√√√10858

3

(b+ 1)2

(b− 1)3
logm

(
2d2m +

21

m

∑
s≥m+1

d2s

)

≤

√√√√304304
(b+ 1

b− 1

)3
log nmax

{
d2⌊n/(2b)⌋,

1

n

∑
s≥⌊n/(2b)⌋

d2s

)}
.

Part (iii) of the assertion is given in [27, Theorem 23] (see Lemma 2.2).
Regarding the constructiveness of the linear sampling algorithms in Lemma 5.1, the bound

Lemma 5.1(i) is the most coarse bound, but the points construction requires only a random draw,
which is computationally inexpensive. The sharper bound in Lemma 5.1(ii) uses an additional
constructive subsampling step. This was implemented and numerically tested in [11] for up to
1000 basis functions. For larger problem sizes the current algorithm is too slow as its runtime is
cubic in the number of basis functions. The sharpest bound in Lemma 5.1(iii) is a pure existence
result. So, the only way to obtain this point set is to brute-force every combination, which is
computational infeasible.

Similarly to the proof of Corollary 2.1, one can prove the following results on convergence rates
of the extended least squares sampling algorithms described in Lemma 5.1.

Corollary 5.1 Let 0 < q < 2 and ∥σ−1∥ℓq(N) ≤ 1. Let SX
n := SX

n (y1, . . . ,yn, ω1, . . . , ωn, Vm) be
the extended least squares algorithm defined as in (2.8). There are universal constants c1, c2, c3 ∈ N
such that for all n ≥ 2 we have the following.

(i) The points from Assumption 5.1(i) fulfill with high probability

sup
v∈BX,σ

∥∥v − SX
c1nv

∥∥
L2(U,X;µ)

≲ n−1/q(log n)1/q;

(ii) The points from Assumption 5.1(ii) fulfill with high probability

sup
v∈BX,σ

∥∥v − SX
c2nv

∥∥
L2(U,X;µ)

≲ n−1/q(logn)1/2.

(iii) There exist points y1, . . . ,yn ∈ U0 and weights ωi ≥ 0 such that

sup
v∈BX,σ

∥∥v − SX
c3nv

∥∥
L2(U,X;µ)

≲ n−1/q.

One can apply the last corollary to parametric PDEs with random inputs and infinite-
dimensional holomorphic functions to receive counterparts of all the results in Sections 3 and 4 on
extended least squares sampling recovery, based on the sample points from Assumption 5.1(i)–(iii).
In particular, by applying Corollary 5.1, from Lemmata 3.1 and 3.2 we obtain

Corollary 5.2 Let SV
n := SV

n (y1, . . . ,yn, ω1, . . . , ωn, Vm) be the extended least squares algorithm
defined as in (2.8) for X = V . Under the assumption of Theorem 3.1, there are universal constants
c1, c2, c3 ∈ N such that for all n ≥ 2 we have the following.
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(i) The points from Assumption 5.1(i) fulfill with high probability∥∥u− SV
c1nu

∥∥
L2(U∞,V ;µ)

≤ CMNn−1/q(log n)1/q;

(ii) The points from Assumption 5.1(ii) fulfill with high probability∥∥u− SV
c2nu

∥∥
L2(U∞,V ;µ)

≤ CMNn−1/q(log n)1/2;

(iii) There exist points y1, . . . ,yn ∈ U0 and weights ωi ≥ 0 such that∥∥u− SV
c3nu

∥∥
L2(U∞,V ;µ)

≤ CMNn−1/q;

The constants C in the above inequalities are independent of of M,N, n and u.

In the affine case (3.4), the convergence rate (n/ logn)−1/q (with 1/q := 1/p− 1/2) in terms of
the number n of sampling points has been received in [14] for an adaptive least squares approx-
imation “lifting” to Hilbert-valued functions, based on an ℓq-summability of the Legendre GPC
expansion coefficients of the parametric solution, and on an adaptive choice of sequence of finite
dimensional approximation spaces, which is different from the linear extended least squares ap-
proximation in Corollary 5.2(i). Notice also that the result in Corollary 5.2(i) for the affine case
could be also proven by a linear modification of the technique used in [14], based on the weighted
ℓ2-summability (3.10). The convergence rate (n/ log n)−1/q (with 1/q := 1/p − 1/2) of sampling
recovery of (b, ε)-holomorphic functions on I∞ has been proven in [5] based on least squares pro-
cedure of [34] “lifting” to Hilbert-valued functions, where ε > 0, b = (bj)j∈N ∈ ℓp(N) is a positive
sequence and 0 < p < 1.

Acknowledgments: The work of Dinh Dũng is funded by the Vietnam National Foundation for
Science and Technology Development (NAFOSTED) in the frame of the NAFOSTED–SNSF Joint
Research Project under Grant IZVSZ2−229568. Felix Bartel acknowledges the financial support
from the Australian Research Council Discovery Project DP240100769. A part of this work was
done when the authors were working at the Vietnam Institute for Advanced Study in Mathematics
(VIASM). They would like to thank the VIASM for providing a fruitful research environment and
working condition.

References

[1] R. A. Adams and J. J. F. Fournier. Sobolev Spaces, volume 140 of Pure and Applied Mathe-
matics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003.

[2] B. Adcock, S. Brugiapaglia, N. Dexter, and S. Moraga. Near-optimal learning of banach-
valued, high-dimensional functions via deep neural networks. Neural Networks, 181:106761,
Jan. 2025.

[3] B. Adcock, S. Brugiapaglia, N. Dexter, and S. Moraga. On efficient algorithms for comput-
ing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from
limited samples. arXiv e-preprint, arXiv:2203.13908, [math.NA], 2023.

24



[4] B. Adcock, S. Brugiapaglia, and C. G. Webster. Sparse Polynomial Approximation of High-
Dimensional Functions. Comput. Sci. Eng. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2022.

[5] B. Adcock, N. Dexter, and S. Moraga. Optimal approximation of infinite-dimensional holomor-
phic functions II: recovery from i.i.d. pointwise samples. arXiv e-preprint, arXiv:2310.16940
[math.NA], 2024.
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